ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Thermal structure technology development of rocket based combined cycle engine
Received date: 2023-09-13
Revised date: 2023-11-06
Accepted date: 2024-04-25
Online published: 2024-05-15
Supported by
National Natural Science Foundation of China(52106055)
As one of the principal propulsion systems for the development of future horizontal take-off and landing reusable earth-to-orbit transportation systems and near-space high-speed flight platforms, the rocket based combined cycle engine with a broad speed range, extensive altitude range, and high specific impulse has made considerable progress in the key technologies such as wide-area combustion organization, mode transition control, and high-efficiency thermal protection in recent years. However, in terms of engine thermal structure technology, the future aerospace vehicle is required to work in a wider speed range and lower structural coefficient, which places significant challenges on the engine thermal structure design, as the issues such as the strong coupling characteristics of integrated flight and propulsion systems, complex spatial and temporal non-uniform thermal environments, ultra-light weight reduction, and reuse and health monitoring can be encountered. Thus, it is essential to ascertain the optimal engine thermal structure constraints through the investigation of the overall parameters, and enhance the engine thermal structure design capability through various technologies. This paper initially considers the typical foreign rocket based combined cycle engine-powered space vehicles, and analyses the influence of the orbiting mode on the thermal structure index demand of the propulsion system. Then the thermal protection and thermal structure schemes of the GTX and Strutjet engines are examined. Finally the characteristics of the combustion organization of the engine and the distribution of the thermal environment are analyzed, and the research progress of three key technologies, namely, active-passive structure thermal protection, geometrical variable high temperature structure, and reusable thermal structure, is presented.
Fei QIN , Zheng ZHAO , Guoqiang HE , Tingting JING , Xing SUN , Xianggeng WEI . Thermal structure technology development of rocket based combined cycle engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529572 -529572 . DOI: 10.7527/S1000-6893.2024.29572
1 | 王长青. 组合动力运载器发展与展望[J]. 中国航天, 2022(1): 9-16. |
WANG C Q. Development and prospect of aerospace vehicle with combined cycle engine[J]. Aerospace China, 2022(1): 9-16 (in Chinese). | |
2 | SHI L, ZHAO G J, YANG Y Y, et al. Research progress on ejector mode of rocket-based combined-cycle engines[J]. Progress in Aerospace Sciences, 2019, 107: 30-62. |
3 | 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798. |
ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese). | |
4 | 韦宝禧, 南楠, 侯金丽. 吸气式组合动力: 人类实现天地往返高效输运的必由之路[J]. 中国航天, 2022(1): 17-22. |
WEI B X, NAN N, HOU J L. Air-breathing combined cycle propulsion—The necessary way to realize efficient transportation between earth and space[J]. Aerospace China, 2022(1): 17-22 (in Chinese). | |
5 | KOTHARI A, LIVINGSTON J, TARPLEY C, et al. Rocket based combined cycle hypersonic vehicle design for orbital access[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
6 | FUJIKAWA T, TSUCHIYA T, TOMIOKA S. Multi-objective, multidisciplinary design optimization of TSTO space planes with RBCC engines[C]∥ Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015. |
7 | KLINK P, OGAWA H. Investigation on the performance and feasibility of RBCC-based access-to-space via multi-objective design optimization[J]. Acta Astronautica, 2019, 157: 435-454. |
8 | ESCHER W J D. A US history of airbreathing/rocket combined-cycle (RBCC) propulsion for powering future aerospace transports, with a look ahead to the year 2020: IS-030[R]. Washington, D.C.: NASA, 1999. |
9 | NASA. Report of the defense science board task force on National Aero-Space Plane (NASP) program: AD-A274530[R]. Washington, D.C.: NASA, 1992. |
10 | COOK S, HUETER U. NASA’s integrated space transportation plan—3rd generation reusable launch vehicle technology update[J]. Acta Astronautica, 2003, 53(4-10): 719-728. |
11 | MCCONNAUGHEY P, FEMMININEO M G, KOELFGEN S, et al. NASA’s launch propulsion systems technology roadmap: M12-1721[R]. Washington, D.C.: NASA, 2012. |
12 | NORRIS G, TRIMBLE S. U.S. air force studies rocket-based hypersonic flying tested plan[EB/OL]. (2020-09-07)[2024-04-25].. |
13 | 彭小波. 组合动力飞行器技术发展[J]. 导弹与航天运载技术, 2016(5): 1-6. |
PENG X B. Development of combined-cycle aerospace vehicle technology[J]. Missiles and Space Vehicles, 2016(5): 1-6 (in Chinese). | |
14 | 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819. |
WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese). | |
15 | 何国强, 秦飞. 火箭基组合循环发动机[M]. 北京: 国防工业出版社, 2019: 138-187. |
HE G Q, QIN F. Rocket based combined cycle[M]. Beijing: National Defense Industry Press, 2019: 138-187 (in Chinese). | |
16 | NIE S, YE J Y, WEI X G, et al. Investigation on geometric throat matching characteristics of variable geometry rocket-based combined cycle combustor[J]. Acta Astronautica, 2023, 209: 104-116. |
17 | ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. |
18 | 王亚军, 何国强, 秦飞, 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1125-1133. |
WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133 (in Chinese). | |
19 | 宋月娥, 吴东涛, 姜硕. 组合动力运载器结构与热防护系统概述[J]. 中国航天, 2022(1): 29-36. |
SONG Y E, WU D T, JIANG S. Introduction to structure and thermal protection system of aerospace vehicle with combined cycle engine[J]. Aerospace China, 2022(1): 29-36 (in Chinese). | |
20 | SIEBENHAAR A, BULMAN M, BONNAR D K. The strutjet rocket based combined cycle engine: NAS8-40891[R]. Washington, D.C.: NASA, 1998. |
21 | TREFNY C J, ROCHE J M. Performance validation approach for the GTX air-breathing launch vehicle: NASA/TM-2002-211495[R]. Washington, D.C.: NASA, 2002. |
22 | NELSON D, BRADFORD J, OLDS J. Abortability metrics: Quantifying intact abort mode availability for reusable launch vehicles[C]∥ Proceedings of the Space 2006. Reston: AIAA, 2006. |
23 | HANK J, FRANKE M, EKLUND D. TSTO reusable launch vehicles using airbreathing propulsion[C]∥ Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006. |
24 | ROCHE J M, KOSAREO D N. Structural sizing of a 25000-lb payload, air-breathing launch vehicle for single-stage-to-orbit: NASA/TM-2001-210667[R]. Washington, D.C.: NASA, 2001. |
25 | TREFNY C. An air-breathing launch vehicle concept for single-stage-to-orbit[C]∥ Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999. |
26 | YUNGSTER S, TREFNY C. Analysis of a new rocket-based combined-cycle engine concept at low speed[C]∥Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999. |
27 | HUNTER J E, MCCURDY D, DUNN P W. GTX reference vehicle structural verification methods and weight summary: NASA/TM-2002-211884[R]. Washington, D.C.: NASA, 2002. |
28 | KRIVANEK T M, ROCHE J M, RIEHL J P. Affordable flight demonstration of the GTX air-breathing SSTO vehicle concept: NASA/TM-2003-212315[R]. Washington, D.C.: NASA, 2003. |
29 | THOMAS S R, PALAC D T, TREFNY C J, et al. Performance evaluation of the NASA GTX RBCC flowpath: NASA/TM-2001-210953[R]. Washington, D.C.: NASA, 2001. |
30 | ROCHE J M, MCCURDY D R. Preliminary sizing of vertical take-off rocket-based combined-cycle powered launch vehicle: NASA/TM-2001-210668[R]. Washington, D.C.: NASA, 2001. |
31 | JING T T, XIN Y P, ZHANG L, et al. Application of carbon fiber-reinforced ceramic composites in active thermal protection of advanced propulsion systems: A review[J]. The Chemical Record, 2023, 23(4): e202300022. |
32 | BOUCHEZ M, BEYER S, SCHMIDT S. PTAH-SOCAR fuel-cooled composite materials structure: 2011 status[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
33 | CHEN F, TAM W, SHIMP N, et al. An innovative thermal management system for a Mach 4 to Mach 8 hypersonic scramjet engine[C]∥ Proceedings of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998. |
34 | SIEBENHAAR A, SHIMP N, JOHNSON R, et al. Aerojet storable fuel scamjet flow path concepts - Phase I Program overview[C]∥ Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
35 | 凌文辉, 侯金丽, 韦宝禧, 等. 空天组合动力技术挑战及解决途径的思考[J]. 推进技术, 2018, 39(10): 2171-2176. |
LING W H, HOU J L, WEI B X, et al. Technical challenge and potential solution for aerospace combined cycle engine[J]. Journal of Propulsion Technology, 2018, 39(10): 2171-2176 (in Chinese). | |
36 | 唐硕, 龚春林, 陈兵. 组合动力空天飞行器关键技术[J]. 宇航学报, 2019, 40(10): 1103-1114. |
TANG S, GONG C L, CHEN B. The key technologies for aerospace with combined cycle engine[J]. Journal of Astronautics, 2019, 40(10): 1103-1114 (in Chinese). | |
37 | 侯晓. 组合循环发动机技术研究进展[J]. 航空学报, 2023, 44(21): 529824. |
HOU X. Research progress in combined cycle engines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529824 (in Chinese). | |
38 | 张蒙正, 李斌, 李光熙. 组合动力:现状、问题与对策[J]. 火箭推进, 2021, 47(6): 1-10. |
ZHANG M Z, LI B, LI G X. Combined cycle propulsion: Current status, problems and solutions[J]. Journal of Rocket Propulsion, 2021, 47(6): 1-10 (in Chinese). | |
39 | 刘建, 侯金丽, 张波, 等. 高超声速组合循环发动机综合热管理技术需求分析[C]∥ 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 2017: 74-83. |
LIU J, HOU J L, ZHANG B, et al. Demand analysis of inte-grated thermal management technologies for hypersonic combined cycle engines[C]∥ The 2nd JCAP and 38th APTIS Technical Conference, 2017: 74-83 (in Chinese). | |
40 | 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. |
WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese). | |
41 | HIRAIWA T, ITO K, SATO S, et al. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center[J]. Acta Astronautica, 2008, 63(5): 565-574. |
42 | THOMAS S R, PERKINS H D, TREFNY C J. Evaluation of an ejector ramjet based propulsion system for air-breathing hypersonic flight: NASA-TM-107422 [R]. Washington, D.C.: NASA, 1997. |
43 | JING T T, HE G Q, LI B B, Thermal analysis of RBCC at ejector, ramjet and scramjet modes: AIAA-2016-4913 [R]. Reston: AIAA, 2016. |
44 | 景婷婷. 碳氢燃料RBCC燃烧室再生冷却流动与换热特性研究[D]. 西安: 西北工业大学, 2018: 12-14. |
JING T T. Flow and thermal analyses of regenerative cooling of RBCC combustor based on hydrocarbon fuel[D]. Xi’an: Northwestern Polytechnical University, 2018: 12-14 (in Chinese). | |
45 | 张蒙正, 路媛媛. 火箭冲压组合动力系统研发再思考[J]. 推进技术, 2018, 39(10): 2219-2226. |
ZHANG M Z, LU Y Y. Consideration once again to rocket ramjet combined engine[J]. Journal of Propulsion Technology, 2018, 39(10): 2219-2226 (in Chinese). | |
46 | 张鑫, 陆阳, 程迪, 等. 氨燃料吸气式变循环发动机性能分析[J]. 力学学报, 2022, 54(11): 3223-3237. |
ZHANG X, LU Y, CHENG D, et al. Analysis of performance of ammonia air-breathing variable cycle engine[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3223-3237 (in Chinese). | |
47 | HUANG B, SHRESTHA U, DAVIS R J, et al. Endothermic pyrolysis of JP-10 with and without zeolite catalyst for hypersonic applications[J]. AIAA Journal, 2018, 56(4): 1616-1626. |
48 | HOU L Y, DONG N, REN Z Y, et al. Cooling and coke deposition of hydrocarbon fuel with catalytic steam reforming[J]. Fuel Processing Technology, 2014, 128: 128-133. |
49 | ORTH R, KISLYKH V. Data analysis from hypersonic combustion tests in the TSNIIMASH PGU-11 facility[C]∥ Proceedings of the Space Plane and Hypersonic Systems and Technology Conference. Reston: AIAA, 1996. |
50 | KELLY H N, BLOSSER M L.Active cooling from the sixties to NASP[C]∥ Current Technology for Thermal Protection Systems Workshop, 1994. |
51 | 胡江玉. 超燃冲压发动机内高温燃气与再生冷却结构耦合传热的研究[D]. 长沙: 国防科技大学, 2021. |
HU J Y. Coupled heat transfer between high-temperature gas and regenerative cooling structures in scramjet engines[D].Changsha: National University of Defense Technology, 2021 (in Chinese). | |
52 | 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. |
HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716 (in Chinese). | |
53 | WANG N, PAN Y, ZHOU J. Research status of active cooling of endothermic hydrocarbon fueled scramjet engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(11): 1780-1794. |
54 | 张云昊, 白光辉, 尤延铖, 等. 欧洲典型再入飞行测试技术分析[J]. 推进技术, 2018, 39(10): 2289-2296, 2156. |
ZHANG Y H, BAI G H, YOU Y C, et al. Review of Europe re-entry flight test technology[J]. Journal of Propulsion Technology, 2018, 39(10): 2289-2296, 2156 (in Chinese). | |
55 | ZHAI Z W, ZHANG B F, WANG Y T, et al. Revealing the promotion of carbonyl groups on vacancy stabilized Pt4/nanocarbons for propane dehydrogenation[J]. Physical Chemistry Chemical Physics, 2022, 24(38): 23236-23244. |
56 | JING T T, XU Z, XU J C, et al. Characteristics of gaseous film cooling with hydrocarbon fuel in supersonic combustion chamber[J]. Acta Astronautica, 2022, 190: 74-82. |
57 | PAQUETTE E L, WARBURTON R, ECKEL A, et al. Cooled CMC scramjet combustor structure development[C]∥ Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. |
58 | PAQUETTE E. Cooled CMC structures for scramjet engine flowpath components[C]∥ Proceedings of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
59 | JASKOWIAK M, DICKENS K. Cooled ceramic matrix composite propulsion structures demonstrated[R]. Washington, D.C.: NASA, 2005. |
60 | CHOUBEY G, SUNEETHA L, PANDEY K M. Composite materials used in Scramjet—A review[J]. Materials Today: Proceedings, 2018, 5(1): 1321-1326. |
61 | TAKEGOSHI M, UEDA S. Cooling characteristics of C/C composite material structure with a metallic tube fixed by elastic forces of each material[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2006, 54(626): 129-135. |
62 | BOUQUET C, LACOMBE A, HAUBER B, et al. Ceramic matrix composites cooled panel development for advanced propulsion systems[C]∥ Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004. |
63 | BOUQUET C. Validation of a leak-free C/SiC heat exchanger technology[C]∥ Proceedings of the 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003. |
64 | JASKOWIAK M. Cooled ceramic composite panel tested successfully in rocket combustion facility[R]. Washington, D.C.: NASA, 2003. |
65 | NGUYEN D, TURNER L. Thermal/fluid analysis of a composite heat exchanger for use on the RLV rocket engine[C]∥ 12th Thermal and Fluids Analysis Workshop, 2002. |
66 | BOUCHEZ M, BEYER S. Ptah-socar fuel-cooled composite materials structure[J]. Progress in Propulsion Physics, 2009, 1: 627-44. |
67 | 辛月鹏. RBCC再生冷却C/SiC燃烧室流动换热特性研究[D].西安: 西北工业大学, 2024. |
XIN Y P. Flow and heat transfer investigation of C/SiC regenerative cooling RBCC combustor[D]. Xi’an: Northwestern Polytechnical University, 2024 (in Chinese). | |
68 | JING T T, HE G Q, QIN F, et al. An innovative self-adaptive method for improving heat sink utilization efficiency of hydrocarbon fuel in regenerative thermal protection system of combined cycle engine[J]. Energy Conversion and Management, 2018, 178: 369-382. |
69 | ZHANG T, JING T T, QIN F, et al. Topology optimization of regenerative cooling channel in non-uniform thermal environment of hypersonic engine[J]. Applied Thermal Engineering, 2023, 219: 119384. |
70 | XIN Y P, ZHANG L, LI Z L, et al. Heat transfer characteristics of endothermic hydrocarbon fuel in C/SiC composites cooling channels[C]∥ 14th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2023: 6-11. |
71 | 叶进颖. RBCC变结构燃烧室工作特性研究[D]. 西安: 西北工业大学, 2018. |
YE J Y. Characteristics of a variable geometry combustor in RBCC[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
72 | 王亚军. 基于热力调节具有宽适应性的RBCC亚燃模态研究[D]. 西安: 西北工业大学, 2017. |
WANG Y J. Investigation of ramjet mode in RBCC for wide adaptability based on thermal adjustment[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
73 | BOUCHEZ M. Combustion investigation for dual-mode ramjets for the LEA program[C]∥ Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
74 | FALEMPIN F, SALMON T, AVRASHKOV V. Fuel-cooled composite materials structures—Status at aerospatiale matra[C]∥ Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000. |
75 | SERRE L, FALEMPIN F. The French PROMETHEE program on hydrocarbon fueled dual mode ramjet - Status in 2001[C]∥ Proceedings of the 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2001. |
76 | 张明睿. RBCC变结构燃烧室热结构方案研究[D]. 西安:西北工业大学, 2023. |
ZHANG M R. Study on thermal structure of RBCC variable structure combustor[D]. Xi’an: Northwestern Polytechnical University, 2023 (in Chinese). | |
77 | 魏毅寅. 组合动力空天飞行若干科技关键问题[J]. 空天技术, 2022(1): 1-12. |
WEI Y Y. Major technological issues of aerospace vehicle with combined-cycle propulsion[J]. Aerospace Technology, 2022(1): 1-12 (in Chinese). | |
78 | 赵文胜. 组合循环发动机科学研究技术路线的优化[J]. 科技导报, 2021, 39(17): 82-90. |
ZHAO W S. Research on R & D technical route of combined cycle engine[J]. Science & Technology Review, 2021, 39(17): 82-90 (in Chinese). | |
79 | RELANGI N, PERI L N P, INGENITO A. SHAR for a TSTO launcher[C]∥ Proceedings of the 25th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2023. |
80 | SIMON D L, GARG S, HUNTER G W, et al. Sensor needs for control and health management of intelligent aircraft engines[C]∥ Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2008. |
81 | RAY A K, DAI X W. Damage-mitigating control of a reusable rocket engine for high performance and extended life[R]. Washington, D.C.: NASA, 1995. |
82 | TRACI R, FARR J, LAGANELLI T, et al. A thermal management systems model for the NASA GTX RBCC concept: NASA /CR-2002-211587 [R]. Washington, D.C.: NASA, 2002. |
83 | LIN C F, FIGUEROA F, POLITOPOULOS A, et al. Distributed health monitoring system for reusable liquid rocket engines[C]∥ Proceedings of the AIAA Infotech@Aerospace 2010. Reston: AIAA, 2010. |
84 | SUNG I K, ANDERSON W. A subscale-based rocket combustor life prediction methodology: AIAA-2005-3570[R]. Reston: AIAA, 2005. |
85 | RICCIUS J, ZAMETAEV E, HAIDN O. Comparison of 2D and 3D structural FE-analyses of LRE combustion chamber walls[C]∥ Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006. |
86 | 徐震. 组合发动机再生冷却凹腔燃烧室结构热力响应与重复使用特性研究[D]. 西安:西北工业大学, 2024. |
XU Z. Thermomechanical response and reuse characteristics of rocket-based combined engine regenerative cooled concave combustion chamber[D]. Xi’an: Northwestern Polytechnical University, 2024 (in Chinese). |
/
〈 |
|
〉 |