Aeronautics Computing and Simulation Technique

A Fisher information based adaptive filtering algorithm for sensor trajectory planning

  • Yumei HU ,
  • Quan PAN ,
  • Bao DENG
Expand
  • 1.AVIC Xi’an Aeronautics Computing Technique Research Institute,Xi’an 710065,China
    2.School of Automation,Northwestern Polytechnical University,Xi’an 710072,China
    3.Key Laboratory of Information Fusion Technology,Ministry of Education,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: dengbao15@sina.com

Received date: 2023-11-02

  Revised date: 2023-11-28

  Accepted date: 2024-02-19

  Online published: 2024-03-11

Supported by

National Natural Science Foundation of China(61976080)

Abstract

To address the problem of incomplete observability of the bearing-only tracking system with single sensor, an optimal motion trajectory of the sensor is presented under the condition of maximizing variational evidence lower bound to accumulate more information from measurement. Firstly, assuming that sensor’s speed is a constant, a joint optimization framework with the super-parameters of sensor’s heading, state estimation and its estimation error covariance is established by using variational Bayesian inference on this basis, the Fisher information matrix with respect to sensor’s heading is derived by maximizing the evidence lower bound, so that the optimal heading can be computed at the point of Fisher information accumulation maximization. Meanwhile, considering the robustness of estimated system, a weighted Kullback-Leibler divergence between variational distribution and the posteriori is taken as a regularization to constructed an optimization function, in which state estimation and the associated error covariance are set as variational super-parameters. Furthermore, the partial derivatives of optimization function with respect to state estimation and the associated error covariance are presented to compute estimation update. Simulations of bearing-only tracking system are presented showing that the proposed algorithm can accumulate information from measurement effectively and achieve a higher estimation performance of accuracy by changing sensor’s heading.

Cite this article

Yumei HU , Quan PAN , Bao DENG . A Fisher information based adaptive filtering algorithm for sensor trajectory planning[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(20) : 629825 -629825 . DOI: 10.7527/S1000-6893.2024.29825

References

1 潘泉. 多源信息融合理论及应用[M]. 北京: 清华大学出版社, 2013.
  PAN Q. Multi-source information fusion theory and its applications[M]. Beijing: Tsinghua University Press, 2013 (in Chinese).
2 WANG X Z, RISTIC B, HIMED B, et al. Trajectory optimisation for cooperative target tracking with passive mobile sensors[J]. Signals20212(2): 174-188.
3 潘泉, 胡玉梅, 兰华, 等. 信息融合理论研究进展: 基于变分贝叶斯的联合优化[J]. 自动化学报201945(7): 1207-1223.
  PAN Q, HU Y M, LAN H, et al. Information fusion progress: joint optimization based on variational Bayesian theory[J]. Acta Automatica Sinica201945(7): 1207-1223 (in Chinese).
4 BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation[M]. Hoboken: Wiley, 2002.
5 胡玉梅, 潘泉, 胡振涛, 等. 基于自然梯度的噪声自适应变分贝叶斯滤波算法[J]. 自动化学报49(10): 1001-1015, 2023.
  HU Y M, PAN Q, HU Z T, et al. A novel noise adaptive variational Bayesian filter using natural gradient[J]. Acta Automatica Sinica49(10): 1001-1015, 2023 (in Chinese).
6 ZHU W L, XU Z P, LI B, et al. Research on the observability of bearings-only target tracking based on multiple sonar sensors[C]∥2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control. Piscataway: IEEE Press, 2012: 631-634.
7 HANSELMANN T, MORELANDE M, MORAN B, et al. Sensor scheduling for multiple target tracking and detection using passive measurements[C]∥2008 11th International Conference on Information Fusion. Piscataway: IEEE Press, 2008: 1-8.
8 PASSERIEUX J M, VAN CAPPEL D. Optimal observer maneuver for bearings-only tracking[J]. IEEE Transactions on Aerospace and Electronic Systems199834(3): 777-788.
9 ZHANG L, LIANG Y, WANG S H, et al. Observable degree analysis for the bearing only tracking system with bounded unknown input[C]∥2020 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2020: 4553-4559.
10 NARDONE S C, AIDALA V J. Observability criteria for bearings-only target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems198117(2): 162-166.
11 JAUFFRET C, PILLON D. Observability in passive target motion analysis[J]. IEEE Transactions on Aerospace and Electronic Systems199632(4): 1290-1300.
12 TAHK M J, RYU H, SONG E J. Observability characteristics of angle-only measurement under proportional navigation[C]∥Proceedings of the 34th SICE Annual Conference. International Session Papers. Piscataway: IEEE Press, 1995: 1509-1514.
13 FOGEL E, GAVISH M. Nth-order dynamics target observability from angle measurements[J]. IEEE Transactions on Aerospace and Electronic Systems198824(3): 305-308.
14 WOFFINDEN D C, GELLER D K. Observability criteria for angles-only navigation[J]. IEEE Transactions on Aerospace and Electronic Systems200945(3): 1194-1208.
15 GRZYMISCH J, FICHTER W. Observability criteria and unobservable maneuvers for In-orbit bearings-only navigation[J]. Journal of Guidance Control Dynamics201437(4): 1250-1259.
16 SONG T L. Observability of target tracking with bearings-only measurements[J]. IEEE Transactions on Aerospace and Electronic Systems199632(4): 1468-1472.
17 ANJALY P, RATNOO A. Observability enhancement of maneuvering target with bearings-only information[J]. Journal of Guidance, Control, and Dynamics201841(1): 184-198.
18 WANG X Z, MORELANDE M, MORAN B. Sensor scheduling for bearings-only tracking with a single sensor[C]∥2009 International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). Piscataway: IEEE Press, 2009: 67-72.
19 HANSELMANN T, MORELANDE M, MORAN B, et al. Sensor scheduling for multiple target tracking and detection using passive measurements[C]∥2008 11th International Conference on Information Fusion. Piscataway: IEEE Press, 2008: 1-8.
20 WANG X Z, CHENG Y Q, MORELANDE M, et al. Bearings-only sensor trajectory scheduling using accumulative information[C]∥2011 12th International Radar Symposium (IRS). Piscataway: IEEE Press, 2011: 682-688.
21 WANG X Z, RISTIC B, HIMED B, et al. Joint passive sensor scheduling for target tracking[C]∥2017 20th International Conference on Information Fusion (Fusion). Piscataway: IEEE Press, 2017: 1-7.
22 HU Y M, WANG X Z, PAN Q, et al. Variational Bayesian Kalman filter using natural gradient[J]. Chinese Journal of Aeronautics202235(5): 1-10.
23 程永强. 雷达信号处理的信息理论与几何方法研究[D]. 长沙: 国防科学技术大学, 2012.
  CHENG Y Q. Information theory and geometric methods of radar signal processing[D].Changsha: National University of Defense Technology, 2012 (in Chinese).
24 LOGOTHETIS A, ISAKSSON A, EVANS R J. Comparison of suboptimal strategies for optimal own-ship maneuvers in bearings-only tracking[C]∥Proceedings of the 1998 American Control Conference(ACC). Piscataway: IEEE Press, 1998: 3334-3338.
25 OSHMAN Y, DAVIDSON P. Optimization of observer trajectories for bearings-only target localization[J]. IEEE Transactions on Aerospace and Electronic Systems199935(3): 892-902.
26 HU Y M, WANG X Z, LAN H, et al. An iterative nonlinear filter using variational Bayesian optimization[J]. Sensors201818(12): 4222.
27 FENG S, HU K L, FAN E, et al. Kalman filter for spatial-temporal regularized correlation filters[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society202130: 3263-3278.
28 张宏伟. 约束非线性滤波及其在目标跟踪中的应用研究[D]. 深圳: 深圳大学, 2019.
  ZHANG H W. Research on constrained nonlinear filtering and its application for target tracking[D].Shenzhen: Shenzhen University, 2019 (in Chinese).
29 GARCIA R V, SILVA W R, PARDAL P C P M, et al. Sequential nonlinear estimation: regularized particle filter applied to the attitude estimation problem with real data[J]. Computational and Applied Mathematics201837(1): 110-121.
30 TICHAVSKY P, MURAVCHIK C H, NEHORAI A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing199846(5): 1386-1396.
31 KARLSSON R, SCHON T, GUSTAFSSON F. Complexity analysis of the marginalized particle filter[J]. IEEE Transactions on Signal Processing200553(11): 4408-4411.
32 ARULAMPALAM M S, RISTIC B, GORDON N, et al. Bearings-only tracking of manoeuvring targets using particle filters[J]. EURASIP Journal on Advances in Signal Processing2004(15): 562960.
Outlines

/