Special Topic: Aero-engine Digital Twin

Precision stacking assembly of aero-engine rotor driven by digital twin

  • Zesheng WANG ,
  • Hui WANG ,
  • Pengfei ZHANG ,
  • Lifeng DU ,
  • Hongqiang BAO ,
  • Dong LIN
Expand
  • 1.Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China
    2.Research Institute of Aero-engine,Beihang University,Beijing 100191,China
    3.AECC Shenyang Liming Aero-Engine Co. ,Ltd. ,Shenyang 110043,China

Received date: 2023-10-24

  Revised date: 2023-11-17

  Accepted date: 2024-01-10

  Online published: 2024-03-11

Supported by

National Science and Technology Major Project of China(J2022-VII-0001-0043)

Abstract

The extremely high structural complexity of the aero-engine, together with its strict requirements of high performance and stability pose big challenges to aero-engine manufacturing technology. Assembly is a key procedure of aero-engine manufacturing that directly affects product quality, wherein rotor is the key power component of aero-engine, in that its assembly accuracy and quality have great influence on aero-engine performance. Rotor is assembled by multiple parts in series, and the assembly error can be arisen by such multiple factors as error accumulation and connection structure deformation. Aiming at the issue of aero-engine rotor assembly error, a data-driven assembly error optimization method is studied. The mechanism of assembly process is analyzed combining the digital twin technology. Research is carried on digital twin assembly optimization technology from three aspects, including the overall technical framework of rotor assembly unit digital twin, digital analysis model of assembly process, and comprehensive evaluation and decision methods of assembly process. A digital analysis model for assembly process is proposed integrating analysis models of multi physical factors. Then data-driven rotor assembly process monitoring and process optimization can be realized. Through application verification of rotor assembly, the proposed optimization method reduces the assembly error by 57.4% compared to the maximum possible error. The digital twin driven rotor assembly optimization method is then proved to be effective for practical problems, providing a new approach for solving the quality prediction and optimization problems of aero-engine rotor assembly.

Cite this article

Zesheng WANG , Hui WANG , Pengfei ZHANG , Lifeng DU , Hongqiang BAO , Dong LIN . Precision stacking assembly of aero-engine rotor driven by digital twin[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(21) : 629759 -629759 . DOI: 10.7527/S1000-6893.2024.29759

References

1 曾纯. 皇冠上的明珠[J]. 中国工业评论2016(11): 2.
  ZENG C. Pearl on the crown[J]. China Industry Review2016(11): 2 (in Chinese).
2 范玉青, 梅中义, 陶剑. 大型飞机数字化制造工程[M]. 北京: 航空工业出版社, 2011: 804.
  FAN Y Q, MEI Z Y, TAO J. Digital manufacturing engineering of large aircraft[M]. Beijing: Aviation Industry Press, 2011: 804 (in Chinese).
3 EWINS D J. Control of vibration and resonance in aero engines and rotating machinery - an overview[J]. International Journal of Pressure Vessels & Piping201087(9): 504-510.
4 CANELIO J A, YIM H. Identification of dimensional variation patterns on compliant assemblies[J]. Journal of Manufacturing Systems200725(2): 65-76.
5 HUANG W, KONG Z. Simulation and integration of geometric and rigid body kinematics errors for assembly variation analysis[J]. Journal of Manufacturing Systems200827(1): 36-44.
6 刘永泉, 王德友, 洪杰, 等. 航空发动机整机振动控制技术分析[J]. 航空发动机201339(5): 1-8, 13.
  LIU Y Q, WANG D Y, HONG J, et al. Analysis of whole aeroengine vibration control technology[J]. Aeroengine201339(5): 1-8, 13 (in Chinese).
7 郑丽, 罗泽明, 付炎晶. 航空发动机整机振动研究综述[J]. 机械制造与自动化201645(1): 199-201.
  ZHENG L, LUO Z M, FU Y J. Research on whole-body vibration of aero-engine[J]. Machine Building & Automation201645(1): 199-201 (in Chinese).
8 DESROCHERS A, RIVIèRE A. A matrix approach to the representation of tolerance zones and clearances[J]. The International Journal of Advanced Manufacturing Technology199713(9): 630-636.
9 MUIEZINOVIC′ A, DAVIDSON J K, SHAH J J. A new mathematical model for geometric tolerances as applied to polygonal faces[J]. Journal of Mechanical Design2004126(3): 504-518.
10 SCHLEICH B, WALTER M, WARTZACK S, et al. A comprehensive framework for skin model simulation[C]∥Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering. 2012: 567-576.
11 LAPERRIèRE L, GHIE W, DESROCHERS A. Statistical and deterministic tolerance analysis and synthesis using a unified Jacobian-Torsor model[J]. CIRP Annals-Manufacturing Technology200251(1): 417-420.
12 YANG Z, HUSSIAN T, POPOV A A, et al. A comparison of different optimization techniques for variation propagation control in mechanical assembly[C]∥ IOP Conference Series: Materials Science and Engineering, Volume 26. 2011: 012017.
13 YANG Z, HUSSAIN T, POPOV A A, et al. Novel optimization technique for variation propagation control in an aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture2010225(1): 100-111.
14 YANG Z, POPOV A A, MCWILLIAM S. Variation propagation control in mechanical assembly of cylindrical components[J]. Journal of Manufacturing Systems201231(2): 162-176.
15 YANG Z, MCWILLIAM S, POPOV A A, et al. A probabilistic approach to variation propagation control for straight build in mechanical assembly[J]. International Journal of Advanced Manufacturing Technology201364(5-8): 1029-1047.
16 单福平, 李志敏, 朱彬. 航空发动机典型转子件装配偏差建模及分析[J]. 制造业自动化201537(7): 100-103.
  SHAN F P, LI Z M, ZHU B. Modeling and analysis of assembling deviation of typical aeroengine rotor parts[J]. Manufacturing Automation201537(7): 100-103 (in Chinese).
17 孟祥海, 单福平. 航空发动机转子件装配质量预测[J]. 制造业自动化201638(5): 61-65.
  MENG X H, SHAN F P. Prediction of assembly quality of aeroengine rotor parts[J]. Manufacturing Automation201638(5): 61-65 (in Chinese).
18 SUN C Z, WANG L, TAN J B, et al. Improvement of variation propagation control in mechanical assembly using adjustment assembly technique[J]. Applied Mechanics and Materials2017870: 459-464.
19 CHEN Y, CUI J, SUN X, et al. Research on multistage rotor assembly optimization methods for aeroengine based on the genetic algorithm[J]. Complexity20212021: 1-14.
20 DING S, JIN S, LI Z, et al. Multistage rotational optimization using unified Jacobian-Torsor model in aero-engine assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019233(1): 251-266.
21 DING S, ZHENG X, BAO J, et al. A comprehensive study of three-dimensional deviation analysis methods for aero-engine rotors assembly[C]∥IOP Conference Series Materials Science and Engineering, Volume 688. 2019: 033039.
22 DING S, HE Y, ZHENG X. A probabilistic approach for three-dimensional variation analysis in aero-engine rotors assembly[J]. International Journal of Aeronautical and Space Sciences202122(5): 1092-1105.
23 SUN C, HU M, LIU Y, et al. A method to control the amount of unbalance propagation in precise cylindrical components assembly[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2019233(13): 2458-2468.
24 SUN Q, ZHAO B, LIU X, et al. Assembling deviation estimation based on the real mating status of assembly[J]. Computer-Aided Design2019115: 244-255.
25 WANG S, SUN Y, GUO J, et al. A prediction method for assembly surface contact considering form error[J]. Procedia CIRP202197: 526-532.
26 LI T, WEN Z, ZHAO B, et al. A novel collaborative optimization assembly process method for multi-performance of aeroengine rotors[J]. The International Journal of Advanced Manufacturing Technology2023125(3-4): 1827-1843.
27 王乐, 周军, 崔艳林. 数字孪生在航空发动机领域的应用分析[J]. 航空动力2020(5): 63-66.
  WANG L, ZHOU J, CUI Y L. Application of digital twin in aero engine[J]. Aerospace Power2020(5): 63-66 (in Chinese).
28 孟松鹤, 叶雨玫, 杨强, 等. 数字孪生及其在航空航天中的应用[J]. 航空学报202041(9): 023615.
  MENG S H, YE Y M, YANG Q, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica202041(9): 023615 (in Chinese).
29 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484.
  ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aero-engine assembly technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
30 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报202142(3): 023981.
  DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica202142(3): 023981 (in Chinese).
31 郭丞皓, 于劲松, 宋悦, 等. 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报202344(11): 227629.
  GUO C H, YU J S, SONG Y, et al. Application of digital twin?based aircraft landing gear health management technology[J]. Acta Aeronautica et Astronautica Sinica202344(11): 227629 (in Chinese).
32 陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统202127(1): 1-15.
  TAO F, ZHANG H, QI Q L, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems202127(1): 1-15 (in Chinese).
33 ZHUANG C, LIU J, XIONG H. Digital twin-based smart production management and control framework for the complex product assembly shop-floor[J]. The International Journal of Advanced Manufacturing Technology201896(1-4): 1149-1163.
34 DESROCHERS A, GHIE W, LAPERRIèRE L. Application of a unified Jacobian-Torsor model for tolerance analysis[J]. Journal of Computing & Information Science in Engineering20033(1): 2-14.
35 CHEN H, JIN S, LI Z, et al. A solution of partial parallel connections for the unified Jacobian-Torsor model[J]. Mechanism and Machine Theory201591: 39-49.
36 JOHNSON K L. 接触力学[M]. 徐秉业, 等, 译. 北京: 高等教育出版社, 1992: 103.
  JOHNSON K L. Contact mechanics[M]. XU B Y, et al, translated. Beijing: Higher Education Press, 1992: 103 (in Chinese).
37 GREENWOOD J A, WILLIAMSON J B. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London. Series A. Mathematical and physical sciences1966295(1442): 300-319.
Outlines

/