Articles

Control volume free element method and its application in turbulent combustion

  • Jinxing DING ,
  • Huayu LIU ,
  • Xiaowei GAO
Expand
  • State Key Laboratory of Structural Analysis for Industrial Equipment,School of Mechanics and Aerospace Engineering,Dalian University of Technology,Dalian 116024,China
E-mail: xwgao@dlut.edu.cn

Received date: 2023-07-29

  Revised date: 2023-09-11

  Accepted date: 2024-01-28

  Online published: 2024-02-02

Supported by

National Natural Science Foundation of China(12072064)

Abstract

In this study, the steady laminar flamelet model is used to describe turbulence-flame interaction, which realizes the decoupling between the flow and the chemical reaction, is able to predict a variety of combustion phenomena well with less computational effort, and proves suitable for application in engineering. The free element method, which only requires a certain number of points to be arranged in the computational area for discretizing the control equations, is employed to overcome the difficulty of complex geometry in engineering. Numerical simulations of laminar counterflow non-premixed flames, two-dimensional axisymmetric co-flow non-premixed methane-air laminar flame, turbulent counterflow non-premixed flame, and burner turbulent non-premixed flame are conducted, respectively. The computational results are studied in comparison with the references to verify the correctness and effectiveness of the free element method in modeling the turbulent combustion.

Cite this article

Jinxing DING , Huayu LIU , Xiaowei GAO . Control volume free element method and its application in turbulent combustion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529382 -529382 . DOI: 10.7527/S1000-6893.2024.29382

References

1 PETERS N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science198410(3): 319-339.
2 CLARAMUNT K, CONSUL R, CARBONELL D, et al. Laminar flamelet concept for laminar and turbulent diffusion flames: AIAA-2004-0796[R]. Reston: AIAA, 2004.
3 CLARAMUNT K, CONSUL R, CARBONELL D, et al. Analysis of the laminar flamelet concept for nonpremixed laminar flames[J]. Combustion and Flame2006145(4): 845-862.
4 LIU F, GUO H, SMALLWOOD G. Evaluation of the laminar diffusion flamelet model in the calculation of an axisymmetric coflow laminar ethylene-air diffusion flame[J]. Combustion and Flame2006144(3): 605-618.
5 CARBONELL D, PEREZSEGARRA C, COELHO P, et al. Flamelet mathematical models for non-premixed laminar combustion[J]. Combustion and Flame2009156(2): 334-347.
6 CòNSUL R, PéREZ-SEGARRA C D, CLARAMUNT K, et al. Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers[J]. Combustion Theory and Modelling20037(3): 525-544.
7 CLARAMUNT K. Multidimensional mathematical modeling and numerical investigation of co-flow partially premixed methane/air laminar flames[J]. Combustion and Flame2004137(4): 444-457.
8 BENNETT B A V, MCENALLY C S, PFEFFERLE L D, et al. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames[J]. Combustion and Flame2000123(4): 522-546.
9 LIU G R. An overview on meshfree methods: For computational solid mechanics[J]. International Journal of Computational Methods201613(5): 1630001.
10 ZHANG X, LIU X H, SONG K Z, et al. Least-squares collocation meshless method[J]. International Journal for Numerical Methods in Engineering200151(9): 1089-1100.
11 WANG L H, QIAN Z H, ZHOU Y T, et al. A weighted meshfree collocation method for incompressible flows using radial basis functions[J]. Journal of Computational Physics2020401: 108964.
12 BOURANTAS G C, LOUKOPOULOS V C. A meshless scheme for incompressible fluid flow using a velocity-pressure correction method[J]. Computers & Fluids201388: 189-199.
13 LIU H Y, GAO X W, XU B B. A free element scheme for simulating two- and three-dimensional incompressible fluid flow[J]. International Journal for Numerical Methods in Fluids202193(4): 1163-1182.
14 GAO X W, LIU H Y, CUI M, et al. Free element method and its application in CFD[J]. Engineering Computations201936(8): 2747-2765.
15 LIU H Y, GAO X W, XU B B. An implicit free element method for simulation of compressible flow[J]. Computers & Fluids2019192: 104276.
16 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
17 GOODWIN D, MOFFAT H, SPETH R. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.2.0[R]. Zenodo, 2015.
18 GAO X W, GAO L F, ZHANG Y, et al. Free element collocation method: A new method combining advantages of finite element and mesh free methods[J]. Computers and Structures2019215(C): 10-26.
19 高效伟, 徐兵兵, 吕军, 等. 自由单元法及其在结构分析中的应用[J]. 力学学报201951(3): 703-713.
  GAO X W, XU B B, Lü J, et al. Free element method and its application in structural analysis[J]. Chinese Journal of Theoretical and Applied Mechanics201951(3): 703-713 (in Chinese).
20 MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics: An advanced introduction with OpenFOAM? and Matlab?[M]. Cham: Springer, 2016.
21 LIU H Y, GAO X W, PAN T. Pressure-velocity coupled zonal free element method for fluid-solid conjugate heat transfer[J]. Engineering Analysis with Boundary Elements2023155: 251-263.
22 SMOOKE M D, MITCHELL R E, KEYES D E. Numerical solution of two-dimensional axisymmetric laminar diffusion flames[J]. Combustion Science and Technology198667(4-6): 85-122.
23 SMITH G P, GOLDEN D M, FRENKLACH M, et al. [EB/OL]. (2023-07-25) [2023-07-29]. .
24 MASTORAKOS E. Turbulent combustion in opposed jet flows[D]. London: Imperial College of Science Technology and Medicine, 1993:156-157
25 KEMPF A, FORKEL H, CHEN J Y, et al. Large-eddy simulation of a counterflow configuration with and without combustion[J]. Proceedings of the Combustion Institute200028(1): 35-40.
Outlines

/