Solid Mechanics and Vehicle Conceptual Design

Layout optimization of control sensors in environmental vibration test

  • Qingfa LUO ,
  • Qin YU ,
  • Gang LI ,
  • Dong WANG
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an  710072,China
    2.AVIC Qing’an Group Co. ,LTD,Xi’an  710077,China
    3.National Key Laboratory of Strength and Structural Integrity,Xi’an  710072,China
E-mail: dwang@nwpu.edu.cn

Received date: 2023-11-06

  Revised date: 2023-12-18

  Accepted date: 2023-12-26

  Online published: 2024-01-04

Supported by

National Natural Science Foundation of China(51975470)

Abstract

In the environmental vibration test of a structural part, it is necessary to use multiple sensors to control the excitation applied to the test sample, so that the power spectrum input to the test sample would be basically consistent with the reference spectrum. However, the power spectrum measured by each of the control sensors may be significantly different, resulting in a noticeable inconsistency between the magnitudes of vibration forces transferred to the test sample by fixture. In some cases, the control spectrum may even go out-of-tolerance to interrupt the test. To address such a problem, this paper carries out the research on the optimization design of the control sensor positions for a vibration test. Firstly, the mathematical model of the position optimization of the control sensors is established according to the multi-point control strategy of the random vibration test on the vibration table. Using the feature mapping method, we obtain the frequency response function of a control sensor by the weighted sum of the frequency response function at the nodes around the control point to ensure continuous movement of the control sensor during the optimal design process. Then, using the gradient-based optimization algorithm, we can readily achieve the optimal position design of the control sensors, and considerably reduce the difference between the root-mean-square value of the response spectra measured by the control sensors. The optimization method proposed in this paper can provide a theoretical guidance for the position design of control sensors in the environmental vibration test of a structural part.

Cite this article

Qingfa LUO , Qin YU , Gang LI , Dong WANG . Layout optimization of control sensors in environmental vibration test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(18) : 0 -229843- . DOI: 10.7527/S1000-6893.2024.29843

References

1 王勇, 宁会峰, 杜尹学. 某机载设备振动夹具设计及试验验证[J]. 机械制造与自动化202251(4): 35-38.
  WANG Y, NING H F, DU Y X. Structure design and test verification of vibration fixture for airborne equipment[J]. Machine Building & Automation202251(4): 35-38 (in Chinese).
2 CHEN D J, CHEN J Y, SHEN X Q, et al. Control strategy for multi-exciter random vibration test[J]. Applied Mechanics and Materials2011141: 33-38.
3 李奇志, 陈国平, 房凯. 环境振动试验传感器布置优化方法研究[J]. 振动与冲击201332(8): 158-161.
  LI Q Z, CHEN G P, FANG K. Sensor placement optimization method in environmental vibration tests[J]. Journal of Vibration and Shock201332(8): 158-161 (in Chinese).
4 李奇志, 陈国平, 陈文华, 等. 最小响应偏离度的振动夹具优化设计[J]. 振动工程学报201427(4): 473-480.
  LI Q Z, CHEN G P, CHEN W H, et al. Optimization design of vibration fixture with the minimum response deviation[J]. Journal of Vibration Engineering201427(4): 473-480 (in Chinese).
5 姚阳, 杨存平, 王际. 振动试验超差控制探讨[J]. 环境技术201937(4): 38-43.
  YAO Y, YANG C P, WANG J. Discussion on vibration test control technology[J]. Environmental Technology201937(4): 38-43 (in Chinese)
6 朱子宏, 沈志强, 高文硕, 等. 夹具特性对振动控制精度影响效应分析[J]. 环境技术201634(5): 14-18, 27.
  ZHU Z H, SHEN Z Q, GAO W S, et al. Analysis of effect of fixture characteristics on vibration control accuracy[J]. Environmental Technology201634(5): 14-18, 27 (in Chinese).
7 欧阳昕, 顾胜健, 陈荣. 约束阻尼层振动试验夹具的动力学分析[J]. 船舶工程201840(): 143-146.
  OUYANG X, GU S J, CHEN R. Dynamic analysis of vibration test fixture with constrained damping layer[J]. Ship Engineering201840(Sup 1): 143-146 (in Chinese).
8 王海东, 李贵林, 王肇喜, 等. 基于多目标遗传算法的三轴振动夹具结构参数优化设计分析[J]. 航天器环境工程202037(2): 154-160.
  WANG H D, LI G L, WANG Z X, et al. Structural optimization design and analysis of triaxial vibration fixture based on multi-objective genetic algorithm[J]. Spacecraft Environment Engineering202037(2): 154-160 (in Chinese).
9 许红卫, 马啸宇, 周建, 等. 小型夹具随机振动试验高频超差问题研究[J]. 火箭推进201945(1): 73-76.
  XU H W, MA X Y, ZHOU J, et al. Study on the excess vibration in high frequency region in random vibration test of small fixture[J]. Journal of Rocket Propulsion201945(1): 73-76 (in Chinese).
10 张允涛, 薛杰, 宋少伟, 等. 轨姿控发动机振动试验夹具结构拓扑优化[J]. 火箭推进202349(1): 93-102.
  ZHANG Y T, XUE J, SONG S W, et al. Structural topology optimization of vibration test fixture for orbit and attitude control engines[J]. Journal of Rocket Propulsion202349(1): 93-102 (in Chinese).
11 陈腾飞, 陈陶菲. 振动夹具的综合优化设计[J]. 电子机械工程202238(4): 24-28.
  CHEN T F, CHEN T F. Comprehensive optimization design of vibration fixture[J]. Electro-Mechanical Engineering202238(4): 24-28 (in Chinese).
12 彭立晓. 振动试验控制点位置选取方法研究[J]. 装备制造技术2021(11): 101-103.
  PENG L X. Study on selection method of vibration test control point position[J]. Equipment Manufacturing Technology2021(11): 101-103 (in Chinese).
13 修晓波, 李伯全, 周峰. 基于遗传算法的温度传感器布置优化[J]. 电子科技202134(9): 17-23.
  XIU X B, LI B Q, ZHOU F. Optimization of temperature sensor location based on genetic algorithm[J]. Electronic Science and Technology202134(9): 17-23 (in Chinese).
14 NASR D, DAHR R EL, ASSAAD J, et al. Comparative analysis between genetic algorithm and simulated annealing-based frameworks for optimal sensor placement and structural health monitoring purposes[J]. Buildings202212(9): 1383.
15 高博, 柏智会, 宋宇博. 基于自适应引力算法的桥梁监测传感器优化布置[J]. 振动与冲击202140(6): 86-92, 189.
  GAO B, BAI Z H, SONG Y B. Optimal placement of sensors in bridge monitoring based on an adaptive gravity search algorithm[J]. Journal of Vibration and Shock202140(6): 86-92, 189 (in Chinese).
16 BIANCONI F, SALACHORIS G P, CLEMENTI F, et al. A genetic algorithm procedure for the automatic updating of FEM based on ambient vibration tests[J]. Sensors202020(11): 3315.
17 杨振伟, 周广东, 伊廷华, 等. 基于分级免疫萤火虫算法的桥梁振动传感器优化布置研究[J]. 工程力学201936(3): 63-70.
  YANG Z W, ZHOU G D, YI T H, et al. Optimal vibration sensor placement for bridges using gradation-immune firefly algorithm[J]. Engineering Mechanics201936(3): 63-70 (in Chinese).
18 伊廷华, 张旭东, 李宏男. 基于自适应猴群算法的传感器优化布置方法研究[J]. 振动与冲击201332(23): 57-63.
  YI T H, ZHANG X D, LI H N. Optimal sensor placement based on adaptive monkey algorithm[J]. Journal of Vibration and Shock201332(23): 57-63 (in Chinese).
19 WEIN F, DUNNING P D, NORATO J A. A review on feature-mapping methods for structural optimization[J]. Structural and Multidisciplinary Optimization202062(4): 1597-1638.
20 ZELICKMAN Y, AMIR O. Optimization of plate supports using a feature mapping approach with techniques to avoid local minima[J]. Structural and Multidisciplinary Optimization202265(1): 31.
Outlines

/