Reviews

Practice and prospect of space AD hoc network technology

  • Jidong SU ,
  • Weilin XU ,
  • Shenghua ZHAI ,
  • Wei WANG ,
  • Yating HE
Expand
  • 1.General Department of Satellite Payload,China Academy of Space Technology (Xi’an),Xi’an 710100,China
    2.Institute of Space Communication and Navigation Technology,China Academy of Space Technology (Xi’an),Xi’an 710100,China
    3.Institute of Space Antenna Technology,China Academy of Space Technology (Xi’an),Xi’an 710100,China

Received date: 2023-11-20

  Revised date: 2023-11-27

  Accepted date: 2023-12-01

  Online published: 2023-12-07

Abstract

The research on space ad hoc network technology is of great significance in improving the space topology adaptability of spacecraft formation, reliability of inter-satellite links and fault tolerance of satellite networks. As space missions are placing increasingly higher requirements for the scale of constellations and multi-star coordination capabilities, scientific researchers have conducted in-depth research on the spacecraft ad hoc network technology and achieved remarkable results. This paper mainly sorts out the topological configuration, link characteristics and orbital configuration of spacecraft networking missions, and analyzes the characteristics and development trends of spacecraft networking. At the same time, the technologies that are applied to the field of spacecraft ad hoc network are introduced, including the time-frequency synchronous measurement technology based on node topology planning, the networking routing technology for active cognition of multi-domain information in the network, and the ad hoc network communication technology based on phased array agile beam pointing. Finally, some open issues and their development trends are also discussed, which can provide reference for subsequent researchers in this field.

Cite this article

Jidong SU , Weilin XU , Shenghua ZHAI , Wei WANG , Yating HE . Practice and prospect of space AD hoc network technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529912 -529912 . DOI: 10.7527/S1000-6893.2023.29912

References

1 高黎. 对地观测分布式卫星系统任务协作问题研究[D]. 长沙: 国防科学技术大学, 2007: 2-18.
  GAO L. Research on earth observation task cooperation for distributed satellites system[D]. Changsha: National University of Defense Technology, 2007: 2-18 (in Chinese).
2 麻小遥. 分布式卫星系统中新型MAC协议研究[D]. 西安: 西安电子科技大学, 2019: 3-25.
  MA X Y. Research on a novel MAC protocol for the distributed satellite system[D]. Xi’an: Xidian University, 2019: 3-25 (in Chinese).
3 林来兴, 张小琳. 星群、星座与编队飞行的概念辨析[J]. 航天器工程201221(5): 97-102.
  LIN L X, ZHANG X L. Discussion on conception of cluster, constellation and formation flying[J]. Spacecraft Engineering201221(5): 97-102 (in Chinese).
4 秦勇, 惠蕾放, 刘晓旭, 等. 分布式空间系统星间通信组网技术研究综述[J]. 空间电子技术201512(4): 1-10.
  QIN Y, HUI L F, LIU X X, et al. Survey: Inter-satellite networking technologies of distributed space systems[J]. Space Electronic Technology201512(4): 1-10 (in Chinese).
5 李健全, 王倩莹, 张思晛, 等. 国外对地观测微纳卫星发展趋势分析[J]. 航天器工程202029(4): 126-132.
  LI J Q, WANG Q Y, ZHANG S X, et al. Analysis on development trends of foreign country’s micro-nano satellites in earth observation[J]. Spacecraft Engineering202029(4): 126-132 (in Chinese).
6 张少康, 何民, 薛力军. 商业微小卫星发展战略研究[J]. 卫星应用2018(5): 52-57.
  ZHANG S K, HE M, XUE L J. Study on development strategy of commercial microsatellite[J]. Satellite Application2018(5): 52-57 (in Chinese).
7 赵炜渝, 白保存, 金仲和. 皮纳卫星应用与特点分析[J]. 国际太空2013(8): 36-40.
  ZHAO W Y, BAI B C, JIN Z H. Application and characteristics analysis of Pina satellite[J]. Space International2013(8): 36-40 (in Chinese).
8 王敬超, 于全. 基于分布式星群的空间信息网络体系架构与关键技术[J]. 中兴通讯技术201622(4): 9-13, 18.
  WANG J C, YU Q. System architecture and key technology of space information network based on distributed satellite clusters[J]. ZTE Technology Journal201622(4): 9-13, 18 (in Chinese).
9 王伟, 臧文驰, 彭竞, 等. 基于RT-PPP的低轨卫星实时高精度时间同步方法[J]. 全球定位系统202146(5): 26-32.
  WANG W, ZANG W C, PENG J, et al. Real time and high precision time synchronization method of LEO satellite based on RT-PPP[J]. GNSS World of China202146(5): 26-32 (in Chinese).
10 申景诗, 左莉华, 贺瑞, 等. 基于Proximity-1协议的星间测距与时间同步技术研究[J]. 航天器工程201625(1): 67-72.
  SHEN J S, ZUO L H, HE R, et al. Study of inter-satellite ranging and time synchronization technology based on CCSDS Proximity-1 Protocol[J]. Spacecraft Engineering201625(1): 67-72 (in Chinese).
11 仵国锋. 认知无线Mesh网络若干关键技术研究[D]. 郑州: 解放军信息工程大学, 2012: 22-48.
  WU G F. Research on some key techniques for cognitive wireless mesh networks[D]. Zhengzhou: PLA Information Engineering University, 2012: 22-48 (in Chinese).
12 戴纯兴. 小卫星星座组网中自适应路由技术的研究与仿真[D]. 成都: 西南交通大学, 2009: 35-47.
  DAI C X. Research and simulation of adaptive route technology in LEO satellite network constellation[D]. Chengdu: Southwest Jiaotong University, 2009: 35-47 (in Chinese).
13 沙沫, 孙凯旋, 何华森, 等. 软件定义卫星网络辅助的空基网络多域路由策略[J]. 天地一体化信息网络20223(3): 56-64.
  SHA M, SUN K X, HE H S, et al. Software defined satellite network assisted multi-domain routing strategy for aeronautical networks[J]. Space-Integrated-Ground Information Networks20223(3): 56-64 (in Chinese).
14 黄子轩, 周家喜, 张靖, 等. 基于捷变波束的卫星通信网络用户随机接入技术[J]. 天地一体化信息网络20223(1): 9-17.
  HUANG Z X, ZHOU J X, ZHANG J, et al. User random access technology based on beam hopping satellite communication system[J]. Space-Integrated-Ground Information Networks20223(1): 9-17 (in Chinese).
15 宋滔, 白翔. 一种基于定向天线的自组网多址接入协议[J]. 通信技术201548(2): 175-180.
  SONG T, BAI X. Ad-hoc network multi-acccess protocol based on directional antenna[J]. Communications Technology201548(2): 175-180 (in Chinese).
16 李靖, 潘申富, 智开宇. 基于跳频应用的Ka频段相控阵波束跟踪技术[J]. 无线电通信技术202248(3): 516-520.
  LI J, PAN S F, ZHI K Y. Ka-band phased array beam tracking technology based on frequency hopping application[J]. Radio Communications Technology202248(3): 516-520 (in Chinese).
17 聂媛媛, 方志耕, 刘思峰, 等. 基于节点修复的低轨卫星网络动态抗毁性模型[J]. 控制与决策202035(5): 1247-1252.
  NIE Y Y, FANG Z G, LIU S F, et al. Dynamic invulnerability model of LEO satellite network based on node repair[J]. Control and Decision202035(5): 1247-1252 (in Chinese).
18 王天枢, 林鹏, 董芳, 等. 空间激光通信技术发展现状及展望[J]. 中国工程科学202022(3): 92-99.
  WANG T S, LIN P, DONG F, et al. Progress and prospect of space laser communication technology[J]. Strategic Study of CAE202022(3): 92-99 (in Chinese).
19 王文杰, 徐伟, 朴永杰, 等. 卫星星间激光通信粗跟踪转台控制系统[J]. 光学 精密工程202129(12): 2797-2805.
  WANG W J, XU W, PIAO Y J, et al. Control system for coarse tracking turntable of laser communication between satellites[J]. Optics and Precision Engineering202129(12): 2797-2805 (in Chinese).
Outlines

/