ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress in combined cycle engines
Received date: 2023-10-09
Revised date: 2023-10-20
Accepted date: 2023-11-01
Online published: 2023-11-09
Supported by
National Level Project
The lower-cost, maneuverable, faster, and reliable earth/orbit transportation system is an inevitable trend in the development of future aerospace technology, which puts forward a strong demand for propulsion systems with wide speed range, large airspace, high specific impulse, and high thrust to weight ratio. Combined cycle power is an ideal power plant for future advanced aerospace transportation systems by efficiently combining different power modes, fully leveraging the performance advantages of each type of propulsion within its working range, and achieving outstanding comprehensive performance throughout the entire mission profile. For the combined cycle propulsions which have the most promising development prospects, especially the rocket based combined cycle, this article reviews their research progress, analyzes their technological development characteristics and breakthroughs achieved, and proposes the main development directions and suggestions for the future development of rocket ramjet combined cycle engines.
Xiao HOU . Research progress in combined cycle engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(21) : 529824 -529824 . DOI: 10.7527/S1000-6893.2023.29824
1 | 龚春林, 陈兵. 组合循环动力在水平起降天地往返飞行器上的应用[J]. 科技导报, 2020, 38(12): 25-32. |
GONG C L, CHEN B. Application analysis of combined cycle engine in horizontal take-off and landing aerospace vehicles[J]. Science & Technology Review, 2020, 38(12): 25-32 (in Chinese). | |
2 | 何国强, 秦飞, 魏祥庚, 等. 火箭冲压组合发动机燃烧的若干基础问题研究[J]. 实验流体力学, 2016, 30(1): 1-14, 27. |
HE G Q, QIN F, WEI X G, et al. Investigation of several fundamental combustion problems in rocket-based combined-cycle engines[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 1-14, 27 (in Chinese). | |
3 | 张升升, 郑雄, 吕雅, 等. 国外组合循环动力技术研究进展[J]. 科技导报, 2020, 38(12): 33-53, 181. |
ZHANG S S, ZHENG X, Lü Y, et al. Research progress of oversea combined cycle propulsion technology[J]. Science & Technology Review, 2020, 38(12): 33-53, 181 (in Chinese). | |
4 | 罗佳茂, 杨顺华, 母忠强, 等. 预冷型组合循环发动机技术[J]. 空气动力学学报, 2022, 40(1): 190-207. |
LUO J M, YANG S H, MU Z Q, et al. Technology analysis of pre-cooled combined-cycle engine[J]. Acta Aerodynamica Sinica, 2022, 40(1): 190-207 (in Chinese). | |
5 | 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2): 298-305. |
WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J]. Journal of Propulsion Technology, 2017, 38(2): 298-305 (in Chinese). | |
6 | 张玫, 张蒙正, 刘昊. 火箭基组合循环动力研究进展[J]. 科技导报, 2020, 38(12): 54-68. |
ZHANG M, ZHANG M Z, LIU H. Progress and analysis of rocket based combined cycle(RBCC) propulsion system[J]. Science & Technology Review, 2020, 38(12): 54-68 (in Chinese). | |
7 | BOWCUTT K, SMITH T R, KOTHARI A, et al. The hypersonic space and global transportation system: A concept for routine and affordable access to space: AIAA-2011-2295[R]. Reston: AIAA, 2011. |
8 | SHI L, HE G Q, QIN F, et al. Rocket-based combined-cycle inlet researches in northwestern polytechnical university[C]∥2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2018: 151-156. |
9 | 王亚军, 何国强, 秦飞, 等. 火箭冲压组合动力研究进展[J]. 宇航学报, 2019, 40(10): 1125-1133. |
WANG Y J, HE G Q, QIN F, et al. Research progress of rocket based combined cycle engines[J]. Journal of Astronautics, 2019, 40(10): 1125-1133 (in Chinese). | |
10 | KANDA T, KUDO K. Conceptual study of a combined-cycle engine for an aerospace plane[J]. Journal of Propulsion and Power, 2003, 19(5): 859-867. |
11 | KOBAYASHI S, MAITA M. Japanese spaceplane program overview: AIAA-1995-6002 [R]. Reston: AIAA, 1995. |
12 | TANATSUGU N, CARRICK P. Hypersonic and combined cycle propulsion for earth-to-orbit applications: AIAA-2003-2586 [R]. Reston: AIAA, 2003. |
13 | AUSLENDER A, SUDER K, THOMAS S R. An overview of the NASA FAP hypersonics project airbreathing propulsion research: AIAA-2009-7277[R]. Reston: AIAA, 2009. |
14 | SNYDER L E, ESCHER D, DEFRANCESCO R, et al. Turbine based combination cycle (TBCC) propulsion subsystem integration: AIAA-2004-3649 [R]. Reston: AIAA, 2004. |
15 | EKLUND D, BOUDREAU A, BRADFORD J. A turbine-based combined cycle solution for responsive space access: AIAA-2005-4186[R]. Reston: AIAA, 2005. |
16 | ZHOU J X, LU H H, ZHANG H C, et al. A preliminary research on a two-stage-to-orbit vehicle with airbreathing pre-cooled hypersonic engines: AIAA-2017-2343[R]. Reston: AIAA, 2017. |
17 | MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators—Overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3-9): 619-630. |
18 | 包为民. 推进组合动力飞行器技术深入研究,开创航天运输发展新时代[J]. 科技导报, 2020, 38(12): 1. |
BAO W M. Promote in-depth research on combined cyclepowered vehicle technology, and create a newera of space transportation development[J]. Science & Technology Review, 2020, 38(12): 1 (in Chinese). | |
19 | 王振国, 梁剑寒, 丁猛, 等. 高超声速飞行器动力系统研究进展[J]. 力学进展, 2009, 39(6): 716-739. |
WANG Z G, LIANG J H, DING M, et al. A review on hypersonic airbreathing propulsion system[J]. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese). | |
20 | 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7): 807-819. |
WANG C Q. Technological innovation and development prospect of aerospace vehicle[J]. Journal of Astronautics, 2021, 42(7): 807-819 (in Chinese). | |
21 | 王长青. 组合动力运载器发展与展望[J]. 中国航天, 2022(1): 9-16. |
WANG C Q. Development and prospect of aerospace vehicle with combined cycle engine[J]. Aerospace China, 2022(1): 9-16 (in Chinese). | |
22 | 赵文胜. 组合循环发动机科学研究技术路线的优化[J]. 科技导报, 2021, 39(17): 82-90. |
ZHAO W S. Research on R & D technical route of combined cycle engine[J]. Science & Technology Review, 2021, 39(17): 82-90 (in Chinese). | |
23 | 彭小波. 组合动力飞行器技术发展[J]. 导弹与航天运载技术, 2016(5): 1-6. |
PENG X B. Development of combined-cycle aerospace vehicle technology[J]. Missiles and Space Vehicles, 2016(5): 1-6 (in Chinese). | |
24 | 彭小波. 组合循环动力技术在天地往返领域的发展与应用[J]. 导弹与航天运载技术, 2013(1): 78-82. |
PENG X B. Development of combined cycle propulsion technology in reusable launch vehicle[J]. Missiles and Space Vehicles, 2013(1): 78-82 (in Chinese). | |
25 | 张旭辉. 组合动力技术的未来应用[J]. 科技导报, 2020, 38(12): 15-24, 2. |
ZHANG X H. Future application of combined cycle propulsion technology[J]. Science & Technology Review, 2020, 38(12): 15-24, 2 (in Chinese). | |
26 | 李斌, 张蒙正, 黄道琼, 等. 组合发动机研究中若干问题探讨[J]. 火箭推进, 2022, 48(6): 1-8. |
LI B, ZHANG M Z, HUANG D Q, et al. Discussion on some problems in combined engine research[J]. Journal of Rocket Propulsion, 2022, 48(6): 1-8 (in Chinese). | |
27 | 张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进, 2009, 35(1): 1-8, 15. |
ZHANG M Z, LI P, CHEN Z K. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion, 2009, 35(1): 1-8, 15 (in Chinese). | |
28 | 张蒙正, 李斌, 李光熙. 组合动力:现状、问题与对策[J]. 火箭推进, 2021, 47(6): 1-10. |
ZHANG M Z, LI B, LI G X. Combined cycle propulsion: Current status, problems and solutions[J]. Journal of Rocket Propulsion, 2021, 47(6): 1-10 (in Chinese). | |
29 | 秦飞, 吕翔, 刘佩进, 等. 火箭基组合推进研究现状与前景[J]. 推进技术, 2010, 31(6): 660-665. |
QIN F, LV X, LIU P J, et al. Research status and perspective of rocket based combined cycle propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 660-665 (in Chinese). | |
30 | 曾家, 黄辉, 朱平平, 等. 火箭基组合动力研究进展与关键技术[J]. 宇航总体技术, 2022, 6(3): 49-57. |
ZENG J, HUANG H, ZHU P P, et al. Research progress and key technology analysis of rocket based combined cycle engines[J]. Astronautical Systems Engineering Technology, 2022, 6(3): 49-57 (in Chinese). | |
31 | 尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机, 2021, 47(4): 1-7. |
YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine, 2021, 47(4): 1-7 (in Chinese). | |
32 | 陈敏, 贾梓豪. 涡轮基组合循环动力关键技术进展[J]. 科技导报, 2020, 38(12): 69-84. |
CHEN M, JIA Z H. Progress and prospect of key technologies for turbine based combined cycle engine[J]. Science & Technology Review, 2020, 38(12): 69-84 (in Chinese). | |
33 | 郑日恒, 陈操斌. 涡轮基组合循环发动机推力陷阱问题解决方案[J]. 火箭推进, 2021, 47(6): 21-32. |
ZHENG R H, CHEN C B. Overview of solutions to TBCC engine thrust trap problem[J]. Journal of Rocket Propulsion, 2021, 47(6): 21-32 (in Chinese). | |
34 | 王占学, 刘增文, 王鸣, 等. 涡轮基组合循环发动机技术发展趋势和应用前景[J]. 航空发动机, 2013, 39(3): 12-17. |
WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of turbine based combined cycle engine[J]. Aeroengine, 2013, 39(3): 12-17 (in Chinese). | |
35 | 王一帆,邹正平,陈懋章 .高超声速强预冷发动机热力循环研究进展[J].航空学报, 2023, 44(21): 529343. |
WANG Y F, ZOU Z P, CHEN M Z. Progress in research of thermodynamic cycle of hypersonic precooled engine [J]. Acta Aeronautica et As-tronautica Sinica, 2023, 44(21): 529343 (in Chinese). | |
36 | 马晓秋. 预冷吸气组合发动机研究进展与关键技术分析[J]. 科技导报, 2020, 38(12): 85-95. |
MA X Q. Research progress of pre-cooled air-breathing combined engines and analysis of the key technology[J]. Science & Technology Review, 2020, 38(12): 85-95 (in Chinese). | |
37 | OLDS J, BRADFORD J, CHARANIA A, et al. Hyperion - An SSTO vision vehicle concept utilizing rocket-based combined cycle propulsion[C]∥Proceedings of the 9th International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 1999. |
38 | UEDA S, TOMIOKA S, Toshihito SAITO T, et al. R&D on hydrocarbon-fueled RBCC engines for a TSTO launch vehicle: AIAA-2015-3611[R]. Reston: AIAA, 2015. |
39 | EHRLICH C. Early studies of RBCC applications and lessons learned for today: AIAA-2000-3105[R]. Reston: AIAA, 2000. |
40 | HUETER U, TURNER J. Rocket-based combined cycle activities in the Advanced Space Transportation Program office[C]∥Proceedings of the 35th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1999. |
41 | RATCKIN G, GOLDMAN A, ORTWERTH P, et al. Rocketdyne RBCC engine concept development [C]∥14th International Symposium on Air Breathing Engines. 1999. |
42 | QUINN J. ISTAR: project status and ground test engine design[C]∥Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2003. |
43 | YE J Y, PAN H L, QIN F, et al. Investigation of RBCC performance improvements based on a variable geometry ramjet combustor[J]. Acta Astronautica, 2018, 151: 874-885. |
44 | SHI L, LIU X W, HE G Q, et al. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode[J]. Acta Astronautica, 2016, 127: 182-196. |
45 | SHI L, HE G Q, LIU P J, et al. A rocket-based combined-cycle engine prototype demonstrating comprehensive component compatibility and effective mode transition[J]. Acta Astronautica, 2016, 128: 350-362. |
46 | WEI X G, XUE R, QIN F, et al. Research on shock wave characteristics in the isolator of central strut rocket-based combined cycle engine under Ma5.5[J]. Acta Astronautica, 2017, 140: 284-292. |
/
〈 |
|
〉 |