Articles

Design technique of swept and bowed axial compressor

  • Zhipeng CAO ,
  • Yongming WANG ,
  • Longbo ZHAO ,
  • Chaobin GUAN ,
  • Xiao NIU ,
  • Chen CHEN
Expand
  • AECC Gas Turbine Establishment,Chengdu 610500,China

Received date: 2023-10-07

  Revised date: 2023-10-08

  Accepted date: 2023-10-18

  Online published: 2023-11-07

Supported by

National Science and Technology Major Project(J2019-I-0021-0020)

Abstract

To increase the pressure ratio is the key for future fuel-efficient turbofan engines, and the compact light-weight high-capacity axial compression system has always been the focus. Composite swept bending, with a low aspect ratio which can efficiently control the supersonic flow losses and flow separation at substantial turning angles, remains the core of high-capacity design exploration. Based on a forward-swept rim-driven fan, we develop a whole new design method of low aspect ratio and 3D swept, centering on the alignment of flows in high-capacity two-stage fan supersonic segments. The refinement of one-dimensional and two-dimensional characteristic models is accomplished according to test results. Optimization techniques are employed to establish a performance alignment protocol that spans all operational scenarios, effectively verified through empirical experiments. To further elevate performance, the study pioneers the concept design and experimental verification of low aspect ratio cascaded blade front-stage deceleration compression and rear-stage turning compression. Validation through numerical simulations confirmed the dynamic blade adsorption within a self-recirculation system. Ultimately, the paper discusses the challenges in designing highly efficient, fully supersonic dynamic blades, especially within variable-flow Flade configurations. It also explores the complex management of low-loss supersonic flow along the annular inner wall and the potential integration of flexible blades and smart materials in shape design methodologies.

Cite this article

Zhipeng CAO , Yongming WANG , Longbo ZHAO , Chaobin GUAN , Xiao NIU , Chen CHEN . Design technique of swept and bowed axial compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529676 -529676 . DOI: 10.7527/S1000-6893.2023.29676

References

1 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报202041(6): 524377.
  YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica202041(6): 524377 (in Chinese).
2 赵保军, 陈士涛, 李大喜, 等. 国外六代机发展及作战概念分析[J]. 现代防御技术202250(6): 19-25.
  ZHAO B J, CHEN S T, LI D X, et al. Analysis of the sixth generation fighter development and operational concept[J]. Modern Defence Technology202250(6): 19-25 (in Chinese).
3 王鹏. 新一代战斗机及其动力发展解析[J]. 航空动力2020(6): 12-16.
  WANG P. Development analysis of next generation fighters and powerplants[J]. Aerospace Power2020(6): 12-16 (in Chinese).
4 离子鱼. 从航空技术发展分析歼-10的后续改进[J]. 舰载武器2008(3): 28-36.
  LI Z Y. Development of aeronautical technique and follow-up improvement of Jian-10[J]. Shipborne Weapons2008(3): 28-36 (in Chinese).
5 梁春华, 索德军, 孙明霞. 美国第6代战斗机发动机关键技术综述[J]. 航空发动机201642(2): 93-97.
  LIANG C H, SUO D J, SUN M X. A review on the key technologies of the sixth generation fighter engines in the US[J]. Aeroengine201642(2): 93-97 (in Chinese).
6 孙明霞,梁春华,索德军,等. 美国第6代战斗机发动机进展分析[J].航空发动机202147(3):1-7.
  SUN Mingxia, LIANG Chunhua, SUO Dejun, et al. Progress analysis of US 6th generation fighter engine[J]. Aviation Engine202147 (3): 1-7 (in Chinese).
7 刘永泉. 国外战斗机发动机的发展与研究[M]. 北京: 航空工业出版社, 2016.
  LIU Y Q. Development and investigation of foreign fighter English[M]. Beijing: Aviation Industry Press, 2016 (in Chinese).
8 龙前广. 双外涵变循环发动机控制计划研究[D]. 南京: 南京航空航天大学, 2021.
  LONG Q G. Research on the control plan of double bypass variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
9 王强, 郑日恒, 陈懋章. 航空发动机科学技术的发展与创新[J]. 科技导报202139(3): 59-70.
  WANG Q, ZHENG R H, CHEN M Z. Development and innovation of aeroengine science and technology[J]. Science & Technology Review202139(3): 59-70 (in Chinese).
10 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017.
  JIA L Y. Research on variable cycle engine control schedule design[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
11 梁春华. 未来的航空涡扇发动机技术[J]. 航空发动机200531(4): 54-58.
  LIANG C H. Future aircraft turbofan engine technologies[J]. Aeroengine200531(4): 54-58 (in Chinese).
12 曹传军, 刘天一, 朱伟, 等. 民用大涵道比涡扇发动机高压压气机技术进展[J]. 航空学报202344(12): 6-23.
  CAO C J, LIU T Y, ZHU W, et al. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine[J]. Acta Aeronautica et Astronautica Sinica202344(12): 6-23 (in Chinese).
13 张子涵. 跨音速压气机预压缩叶片设计方法与气动性能研究[D].哈尔滨:哈尔滨工业大学, 2022.
  ZHANG Z H. Design method and aerodynamic performance study of pre compressed blades for transonic compressors [D]. Harbin: Harbin Institute of Technology, 2022.
14 SELLIN M, PUTERBAUGH S, COPENHAVER W. Tip shock structures in transonic compressor rotors: AIAA-1993-1869[R]. Reston: AIAA, 1993.
15 蔡娜, 钟芳源. 轴流式弯掠动叶变工况气动: 声学性能的实验研究[J]. 工程热物理学报199617(3): 280-285.
  CAI N, ZHONG F Y. An experiment on aerodynamic-aeroacoustic performance for skewed-swept rotor blading of axial flow fan[J]. Journal of Engineering Thermophysics199617(3): 280-285 (in Chinese).
16 欧阳华, 钟芳源. 叶轮机械气动噪声及周向前弯动叶降噪技术的研究[J]. 风机技术200244(5): 11-15.
  OUYANG H, ZHONG F Y. Aeroacoustic research on impeller machine and denoise design with skewed blade[J]. Compressor Blower & Fan Technology200244(5): 11-15 (in Chinese).
17 茅晓晨, 刘波, 张国臣, 等. 复合弯掠优化对跨声速压气机性能影响的研究[J]. 推进技术201536(7): 996-1004.
  MAO X C, LIU B, ZHANG G C, et al. Effectiveness of composite optimization of lean and sweep on transonic compressor performance[J]. Journal of Propulsion Technology201536(7): 996-1004 (in Chinese).
18 张鹏, 刘波, 毛晓晨, 等. 三维造型和非轴对称端壁在跨声速压气机中的应用[J]. 推进技术201637(2): 250-257.
  ZHANG P, LIU B, MAO X C, et al. Application of 3D blading and non-axisymmetric endwall in a transonic compressor[J]. Journal of Propulsion Technology201637(2): 250-257 (in Chinese).
19 毛明明. 跨声速轴流压气机动叶弯和掠的数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
  MAO M M. Numerical investigation of bowed and swept rotor in a transonic axial compressor[D]. Harbin: Harbin Institute of Technology, 2008 (in Chinese).
20 袁巍, 陆亚钧, 周盛. 高负荷风扇级的特性实验与流场分析[J]. 推进技术200425(4): 377-380.
  YUAN W, LU Y J, ZHOU S. Flow field analysis on the characteristic of a high load compressor fan[J]. Journal of Propulsion Technology200425(4): 377-380 (in Chinese).
21 程荣辉, 周拜豪. 掠形风扇技术研究[J]. 燃气涡轮试验与研究199811(2): 12-17.
  CHENG R H, ZHOU B H. Research on swept fan technology[J]. Gas Turbine Experiment and Research199811(2): 12-17 (in Chinese).
22 刘永泉, 刘太秋, 季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报201536(8): 2563-2576.
  LIU Y Q, LIU T Q, JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2563-2576 (in Chinese).
23 KERREBROCK J L, EPSTEIN A H, MERCHANT A A,et al. Design and test of an aspirated counter-rotating fan[J]. Journal of Turbomachinery2008130(2):293-302.
24 葛正威, 葛治美, 朱俊强, 等. 吸附式跨声速压气机叶栅流场数值模拟[J]. 航空动力学报200722(8): 1365-1370.
  GE Z W, GE Z M, ZHU J Q, et al. Numerical investigation of boundary layer suction in an axial transonic compressor cascade[J]. Journal of Aerospace Power200722(8): 1365-1370 (in Chinese).
25 季路成, 项林, 邢秀清, 等. 由两个风扇转子设计得到的启示[J]. 工程热物理学报200122(1): 48-50.
  JI L C, XIANG L, XING X Q, et al. Suggestions obtained from designs of two highly loaded fan rotors[J]. Journal of Engineering Thermophysics200122(1): 48-50 (in Chinese).
26 齐亦农, 李承辉, 赵刚. 高马赫数、高负荷双级风扇转子叶尖区域激波结构测量[J]. 燃气涡轮试验与研究200215(3): 33-37.
  QI Y N, LI C H, ZHAO G. Measurement of rotor tip shock wave structure of a two stage fan with high Mach number and high load[J]. Gas Turbine Experiment and Research200215(3): 33-37 (in Chinese).
27 陈浮,赵桂杰,宋彦萍,等.叶片弯、掠对压气机端壁流动的影响[J].工程热物理学报2004(2):211-215.
  CHEN F, ZHAO G J, SONG Y P, et al. The influence of blade bending and sweeping on the end wall flow of a compressor [J]. Journal of Engineering Thermophysics2004 (2): 211-215 (in Chinese).
28 WENNERSTROM A J. Investigation of a 1500 FT/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio[R]. Washington, D.C.: NASA, 1976.
29 SHAN P, GUI X M. Final report for the design and experiment study of a high loading single-stage model fan ATS-2 with a backward swept rotor: GF-A0041935[R]. Beijing: Beijing University of Aeronautics and Astronautics, 2000.
30 陈葆实, 胡国荣, 魏玉冰, 等. 高马赫数、高负荷单级风扇设计和试验研究[J]. 航空发动机200026(3): 28-35.
  CHEN B S, HU G R, WEI Y B, et al. Design and experimental study of single-stage fan with high Mach number and high load[J]. Aeroengine200026(3): 28-35 (in Chinese).
31 YU Q, LI Q S, LI L. The experimental researches on improving operating stability of a single stage transonic fan[R]. New York: ASME, 2009.
32 刘宝杰, 邹正平, 严明, 等. 叶轮机计算流体动力学技术现状与发展趋势[J]. 航空学报200223(5): 394-404.
  LIU B J, ZOU Z P, YAN M, et al. Present status and future development of CFD in turbomachinery[J]. Acta Aeronautica et Astronautica Sinica200223(5): 394-404 (in Chinese).
33 赵斌, 徐朋飞, 刘宝杰. 高负荷风扇气动设计: 转子叶尖参数选取分析[J]. 航空动力学报201025(11): 2564-2570.
  ZHAO B, XU P F, LIU B J. Aerodynamic design of highly loaded fan: Analysis of rotor tip parameter selection[J]. Journal of Aerospace Power201025(11): 2564-2570 (in Chinese).
34 WENNERSTROM A J. Design of highly loaded axial-flow fans and compressors[M]. Wilder: Concepts ETI Incorporation, 2000.
35 曹志鹏, 兰发祥, 张旭, 等. 风扇转子箍环与机匣间容腔的全三维数值模拟[J]. 燃气涡轮试验与研究201326(2): 24-27.
  CAO Z P, LAN F X, ZHANG X, et al. Numerical investigation on tip ring-cavity of fan rotor[J]. Gas Turbine Experiment and Research201326(2): 24-27 (in Chinese).
36 尹红顺, 周拜豪, 余华蔚, 等. 高压比串列风扇气动设计[J]. 燃气涡轮试验与研究201427(6): 1-7.
  YIN H S, ZHOU B H, YU H W, et al. Aerodynamic design of high pressure ratio tandem fan[J]. Gas Turbine Experiment and Research201427(6): 1-7 (in Chinese).
37 曹志鹏, 尹红顺, 周拜豪, 等. 超声速串列静叶设计[J]. 燃气涡轮试验与研究201528(2): 1-6.
  CAO Z P, YIN H S, ZHOU B H, et al. Design of supersonic tandem stator[J]. Gas Turbine Experiment and Research201528(2): 1-6 (in Chinese).
38 安利平, 黄萍. 一种基于计算几何控制无量纲参数的叶片造型方法[J]. 燃气涡轮试验与研究201326(4): 8-12, 17.
  AN L P, HUANG P. Innovative blading method based on calculating geometry[J]. Gas Turbine Experiment and Research201326(4): 8-12, 17 (in Chinese).
39 黄萍, 安利平. 基于Bzéier曲线的新型叶片造型技术研究[J]. 燃气涡轮试验与研究200821(2): 19-23.
  HUANG P, AN L P. Research of new blading technique using the Bézier curve[J]. Gas Turbine Experiment and Research200821(2): 19-23 (in Chinese).
40 MCGLUMPHY J. Numerical investigation of subsonic axial-flow tandem compressor blades[D]. Virginia: Virginia Polytechnic Institute&State University, 2007.
41 MCGLUMPHY J, NG W F, WELLBORN S R, et al. Numerical investigation of tandem airfoils for subsonic axial-flow compressor blades[J]. Journal of Turbomachinery2009131(2): 174-181.
42 MCGLUMPHY J, NG W F, WELLBORN S R, et al. 3D numerical investigation of tandem airfoils for a core compressor rotor[J]. Journal of Turbomachinery2010132(3): 031009.
43 BAMMERT K, STAUDE R. Optimization for rotor blades of tandem design for axial flow compressors[J]. Journal of Engineering for Gas Turbines and Power1980102(2): 369-375.
44 BAMMERT K, BEELTE H. Investigations of an axial flow compressor with tandem cascades[J]. Journal of Engineering for Gas Turbines and Power1980102(4): 971-977.
45 BAMMERT K, STAUDE R. New features in the design of axial-flow compressors with tandem blades[R]. New York: ASME, 2015.
46 SAHA U K, ROY B. Experimental investigations on tandem compressor cascade performance at low speeds[J]. Experimental Thermal and Fluid Science199714(3): 263-276.
47 曹志鹏, 王永明, 尹红顺, 等. 超声速串列静叶积叠优化分析[J]. 航空科学技术201526(5): 81-88.
  CAO Z P, WANG Y M, YIN H S, et al. Stacking optimization analysis of supersonic tandem stator[J]. Aeronautical Science & Technology201526(5): 81-88 (in Chinese).
48 曹志鹏, 赵龙波, 王靖宇, 等. 自循环吸附动叶设计原理及数值模拟分析[J]. 航空学报201738(9): 521098.
  CAO Z P, ZHAO L B, WANG J Y, et al. Design principles and numerical simulation analysis of self-circulating aspirated rotor[J]. Acta Aeronautica et Astronautica Sinica201738(9): 521098 (in Chinese).
49 KERREBROCK J L, REIJNEN D P, ZIMINSKY W S, et al. Aspirated compressor[R]. New York: ASME, 1997.
50 DAY I J. Active suppression of rotating stall and surge in axial compressors[R]. New York: ASME, 2015.
51 关朝斌, 曹志鹏, 尹红顺, 等. 动叶自适应吸附技术分析[J]. 航空科学技术201728(11): 54-61.
  GUAN C B, CAO Z P, YIN H S, et al. Analysis of technology on self-adaptive aspirated rotor[J]. Aeronautical Science & Technology201728(11): 54-61 (in Chinese).
52 童志庭, 聂超群, 朱俊强. 微喷气提高轴流压气机稳定性的研究[J]. 工程热物理学报200627(S1): 121-124.
  TONG Z T, NIE C Q, ZHU J Q. Investigation on miro tip injection improving the stability of an anxial compressor[J]. Journal of Engineering Thermophysics200627(S1): 121-124 (in Chinese).
53 WADIA A R, MIEIKE M J. Self bleeding rotor blade: US05480284A[P]. 1996-01-02.
54 WANG S T, QIANG X Q, LIN W C, et al. Highly-loaded low-reaction boundary layer suction axial flow compressor[R]. New York: ASME, 2009.
55 LAROSILIERE L, WOOD J R, HATHAWAY M, et al. Aerodynamic design study of advanced multistage axial compressor[R]. Washington, D.C.: NASA, 2002.
56 张龙新. 高速多级低反力度压气机气动设计方法及其内部流动研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
  ZHANG L X. On the design method and inner flow of high speed multi-stage low reaction aspirated compressor[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
57 DICKENS T, DAY I. The design of highly loaded axial compressors[R]. New York: ASME, 2010.
58 KERREBROCK J L, DRELA M, MERCHANT A A, et al. A family of designs for aspirated compressors[R]. New York: ASME, 2014.
59 SCHULER B J, KERREBROCK J L, MERCHANT A A, et al. Design, analysis, fabrication and test of an aspirated fan stage[R]. New York: ASME, 2014.
60 MERCHANT A, KERREBROCK J L, ADAMCZYK J J, et al. Experimental investigation of a high pressure ratio aspirated fan stage[R]. New York: ASME, 2008.
61 ZHANG L X, DU X, LIU X, et al. 3D unsteady simulation of a low speed low-reaction aspirated compressor[R]. New York: ASME, 2016.
62 WANG S T, QIANG X Q, LIN W C, et al. A study of parameter selection principle and internal flow mechanism in a multi-stage low-reaction axial flow compressor[R]. New York: ASME, 2009.
Outlines

/