Reviews

Research and prospect of aero engine blade damage and its repair technology

  • Pengtao LI ,
  • Hongfu ZUO ,
  • Wen XIAO ,
  • Zezhong GUO ,
  • Zhexun YUAN
Expand
  • 1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2.Power Plant Department,Eastern Aviation Technology Co. ,LTD,Shanghai 200335,China
E-mail: rms@nuaa.edu.cn

Received date: 2023-09-22

  Revised date: 2023-10-10

  Accepted date: 2023-11-01

  Online published: 2023-11-07

Supported by

National Natural Science Foundation of China-Joint Fund of Civil Aviation Key Project(U1933202)

Abstract

As an important part of aero engine, blade damage and maintenance have an important impact on aircraft operation safety and operating cost. To improve the maintenance quality and efficiency, scholars at home and abroad have carried out considerable theoretical and technological research on blade maintenance. To further analyze the maintenance process of damaged blades, firstly, the damage types and causes of fan blades, compressor blades, turbine blades and integral disk blades were summarized, and the maintenance technical routes under different damage conditions were analyzed in detail. The research field of in situ maintenance is weak. Therefore, the related technology and equipment of in situ maintenance are explained in detail, as well as the related optimization method and the application of new technology. Finally, the research and development direction of aero engine blade maintenance are prospected, which can provide reference for future researchers in this field.

Cite this article

Pengtao LI , Hongfu ZUO , Wen XIAO , Zezhong GUO , Zhexun YUAN . Research and prospect of aero engine blade damage and its repair technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 29635 -029635 . DOI: 10.7527/S1000-6893.2023.29635

References

1 新华社记者. 让中国的飞机用上更加强劲的“中国心” [N]. 人民日报, 2023-09-04(1).
  Xinhua News Agency. Let China’s aircraft use more powerful “China heart” [N]. People’s Daily,2023-09-04(1) (in Chinese).
2 赵欢, 姜宗民, 丁汉. 航空发动机叶片叶缘随形磨抛刀路规划[J]. 航空学报202142(10): 524318.
  ZHAO H, JIANG Z M, DING H. Tool path planning for profiling grinding of aero-engine blade edge[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524318 (in Chinese).
3 段发阶, 牛广越, 周琦, 等. 航空发动机叶尖间隙在线测量技术研究综述[J]. 航空学报202243(9): 626014.
  DUAN F J, NIU G Y, ZHOU Q, et al. A review of online blade tip clearance measurement technologies for aeroengines[J]. Acta Aeronautica et Astronautica Sinica202243(9): 626014 (in Chinese).
4 王辉, 吴宝海, 李小强. 新一代商用航空发动机叶片的先进加工技术[J]. 航空制造技术201457(20): 26-31.
  WANG H, WU B H, LI X Q. Advanced machining technology of new generation commercial aeroengine blade[J]. Aeronautical Manufacturing Technology201457(20): 26-31 (in Chinese).
5 易中辉. 基于混合现实平台的发动机叶片损伤识别研究[D]. 广汉: 中国民用航空飞行学院, 2021.
  YI Z H. Research on defects identification of engine blade based on mixed reality platform[D].Guanghan: Civil Aviation Flight University of China, 2021 (in Chinese).
6 YANG P P, YUE W H, LI J, et al. Review of damage mechanism and protection of aero-engine blades based on impact properties[J]. Engineering Failure Analysis2022140: 106570.
7 GUAN Y P, ZHAO Z H, CHEN W, et al. Foreign object damage to fan rotor blades of aeroengine Part II: Numerical simulation of bird impact[J]. Chinese Journal of Aeronautics200821(4): 328-334.
8 张海洋, 王相平, 杜少辉, 等. 航空发动机风扇叶片的抗鸟撞设计[J]. 航空动力学报202035(6): 1157-1168.
  ZHANG H Y, WANG X P, DU S H, et al. Design for anti-bird impact of aero-engine fan blade[J]. Journal of Aerospace Power202035(6): 1157-1168 (in Chinese).
9 XIE Z B, MA Z Y, CHEN Q G, et al. Foreign object damage simulation of aero-engine blade[J]. Journal of Physics: Conference Series20201678(1): 012020.
10 SHARMA R, SINGH S, SINGH A K. Foreign object damage investigation of a bypass vane of an aero-engine[J]. Materials Today: Proceedings20185(9): 17717-17724.
11 SHANG H B, SUN C, LIU J X, et al. Deep learning-based borescope image processing for aero-engine blade in situ damage detection[J]. Aerospace Science and Technology2022123: 107473.
12 王浩, 王立文, 王涛, 等. 航空发动机损伤叶片再制造修复方法与实现[J]. 航空学报201637(3): 1036-1048.
  WANG H, WANG L W, WANG T, et al. Method and implementation of remanufacture and repair of aircraft engine damaged blades[J]. Acta Aeronautica et Astronautica Sinica201637(3): 1036-1048 (in Chinese).
13 白瑞金, 张利国. 涡轮叶片修复及其市场分析[J]. 航空制造技术200245(12): 37-40.
  BAI R J, ZHANG L G. Turbine blade repairing and its market analysis[J]. Aeronautical Manufacturing Technology200245(12): 37-40 (in Chinese).
14 孙聪. 民用航空发动机叶片损伤原位检测与评价技术[D]. 哈尔滨: 哈尔滨工业大学, 2022.
  SUN C. In situ detection and evaluation technology of aeroengine blade damage[D].Harbin: Harbin Institute of Technology, 2022 (in Chinese).
15 张胜, 侯金保, 李晓红. 大推力航空发动机热端部件损伤修复技术综述[C]∥ 大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 北京: 中国航空学会, 2007: 2645-2650.
  ZHANG S, HOU J B, LI X H. Review of repair tech niques for hot end components of high-thrust aero engines[C]∥ Proceedings of the High-level Forum on Key Technologies of Large Aircraft and the 2007 Academic Annual Meeting of the Chinese Society of Aeronautics and Astronautics. Beijing: Chinese Society of Aeronautics and Astronautics, 2007: 2645-2650 (in Chinese).
16 陈懋章, 刘宝杰. 风扇/压气机气动设计技术发展趋势: 用于大型客机的大涵道比涡扇发动机[J]. 航空动力学报200823(6): 961-975.
  CHEN M Z, LIU B J. Fan/compressor aero design trend and challenge on the development of high bypass ratio turbofan[J]. Journal of Aerospace Power200823(6): 961-975 (in Chinese).
17 关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报200728(4): 851-857.
  GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade in aeroengine[J]. Acta Aeronautica et Astronautica Sinica200728(4): 851-857 (in Chinese).
18 FARAHANI H K, KETABCHI M, ZANGENEH S, et al. Characterization of damage induced by impacting objects in udimet-500 alloy[J]. Journal of Failure Analysis and Prevention201616(4): 629-634.
19 Engines, aircraft, turbojet and turbofan: [S]. 1973.
20 Engines, aircraft, turbine: JSGS-87231A [S]. 1995.
21 Engine structural integrity program (ENSIP): MIL-STD-1783[R]. 1984.
22 Engine structural integrity program (ENSIP): MIL-HDBK-1783B[R]. 2004.
23 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机通用规范: [S]. 北京: 国防科学技术工业委员会, 1987.
  Commission of Science. General specification for aviation turbojet and turbofan engines: [S]. Beijing: Commission of Science, 1987 (in Chinese).
24 康继东.钛制压气机叶片受硬物击伤的维修性研究[D].南京: 南京航空航天大学, 1996.
  KANG J D. Study on maintainability of titanium compressor blades damaged by hard objects[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 1996 (in Chinese).
25 陶春虎, 钟培道, 王仁智, 等. 航空发动机转动部件的失效与预防[M]. 北京: 国防工业出版社, 2000.
  TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing: National Defense Industry Press, 2000 (in Chinese).
26 宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993.
  SONG Z H. Typical fault analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1993 (in Chinese).
27 Aerospace FOD Prevention National. FOD prevention guideline: 1-800-FOD-1121[R]. [S. l.]: National Aerospace FOD Prevention, Inc, 2000.
28 胡绪腾. 外物损伤及其对钛合金叶片高循环疲劳强度的影响[D]. 南京: 南京航空航天大学, 2009.
  HU X T. Foreign object damage and its effect on high cycle fatigue strength of titanium alloy engine blades[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
29 MICHAELS K, 李璇. 发动机叶片的维修与更换[J]. 航空维修与工程2016(1): 24-25.
  MICHAELS K, LI X. Fan blade repair or replacement[J]. Aviation Maintenance & Engineering2016(1): 24-25 (in Chinese).
30 马超, 武耀罡, 师利中, 等. 航空发动机风扇叶片硬物冲击损伤的统计分析[J]. 航空维修与工程2016(3): 41-42.
  MA C, WU Y G, SHI L Z, et al. Statistical analysis on hard object impact damage for aero-engine fan blade[J]. Aviation Maintenance & Engineering2016(3): 41-42 (in Chinese).
31 马超, 王玉娜, 武耀罡, 等. 航空发动机风扇叶片硬物冲击损伤特征[J]. 航空动力学报201732(5): 1105-1111.
  MA C, WANG Y N, WU Y G, et al. Hard object impact damage characteristics of aero engine fan blade[J]. Journal of Aerospace Power201732(5): 1105-1111 (in Chinese).
32 万煜玮. 风扇叶片外物损伤后的疲劳性能预测方法研究[D]. 南京: 南京航空航天大学, 2018.
  WAN Y W. Research on fatigue prediction for fan blade following foreign object damage[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
33 马超, 王玉娜, 张雄飞, 等. 民用航空发动机持续适航维修特性评估[J]. 航空发动机201945(4): 97-102.
  MA C, WANG Y N, ZHANG X F, et al. Evaluation on continued airworthiness maintenance characteristics of civil aviation engine[J]. Aeroengine201945(4): 97-102 (in Chinese).
34 陈云永, 杨小贺, 卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报201738(9): 520953.
  CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica201738(9): 520953 (in Chinese).
35 SUN Y C, ZHANG Y M, ZHOU Y D, et al. Evaluating impact damage of flat composite plate for surrogate bird-strike testing of aeroengine fan blade[J]. Journal of Composites Science20215(7): 171.
36 陈柳金, 何法江, 吕鸿雁. 民用航空发动机叶片损伤研究[J]. 物流科技202245(1): 59-61.
  CHEN L J, HE F J, LV H Y. Study on blade damage of civil aviation engine[J]. Logistics Sci-Tech202245(1): 59-61 (in Chinese).
37 SCHIJVE J. Fatigue of structures and materials[M]. Dordrecht: Kluwer Academic, 2001.
38 寇海军. 民航发动机高压压气机叶片多工况振动特性及疲劳研究[D]. 天津: 天津大学, 2017.
  KOU H J. Research on multi-point vibration characteristics and fatigue of civil aviation engine high-pressure compressor blade[D].Tianjin: Tianjin University, 2017 (in Chinese).
39 付曦. 多种载荷效应的疲劳损伤模型与压气机叶片寿命预测研究[D]. 天津: 天津大学, 2018.
  FU X. Research on fatigue damage model under multi-load effect and life prediction of compressor blade[D].Tianjin: Tianjin University, 2018 (in Chinese).
40 邓小禾, 赵永红. 航空发动机压气机叶片疲劳寿命的研究[J]. 新疆工学院学报2000(3): 221-225.
  DENG X H, ZHAO Y H. Research into service life of vanes of aerial-engines[J]. Journal of Xinjiang Institute of Technology2000(3): 221-225 (in Chinese).
41 乐晓斌, 高德平, 何明鉴. 压气机叶片疲劳可靠度及寿命的预测方法[J]. 航空动力学报199510(2): 32-35, 92-93 (in Chinese).
  LE X B, GAO D P, HE M J. Prediction method of fatigue reliability and life of compressor blades[J]. Journal of Aerospace Power199510(2): 32-35,92-93 (in Chinese).
42 HOU N, WEN Z, YU Q, et al. Application of a combined high and low cycle fatigue life model on life prediction of SC blade[J]. International Journal of Fatigue200931(4): 616-619.
43 PETERS J O, RITCHIE R O. Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V[J]. Engineering Fracture Mechanics200067(3): 193-207.
44 BYRNE J. Influence of LCF overloads on combined HCF/LCF crack growth[J]. International Journal of Fatigue200325(9-11): 827-834.
45 潘胜豪. 基于连续损伤力学压气机叶片疲劳行为与损伤机理研究[D]. 天津: 天津大学, 2021.
  PAN S H. Investigation of fatigue behavior and damage mechanism of compressor blade based on continuous damage mechanics[D]. Tianjin: Tianjin University, 2021 (in Chinese).
46 PATIL S. CFD analysis of turbocharger compressor to study the effect of geometry change on surge and performance of compressor[J]. International Journal of Performability Engineering201814(1): 9-16
47 谢进祥. 轴流压缩机首级叶片疲劳断裂的原因分析[J]. 风机技术200749(2): 64-70.
  XIE J X. The cause analysis of fatigue for the first stage blade of axial-flow compressor[J]. Compressor, Blower & Fan Technology, 200749(2): 64-70 (in Chinese).
48 聂奥. 航空发动机叶片腐蚀点标注及恒力打磨技术研究[D]. 襄阳: 湖北文理学院, 2022.
  NIE A. Research on blade corrosion point marking and constant force grinding technology[D]. Xiangyang: Hubei University of Arts and Sciences 2022 (in Chinese).
49 JAHANGIRI M R, FALLAH A A, GHIASIPOUR A. Cement kiln dust induced corrosion fatigue damage of gas turbine compressor blades—A failure analysis[J]. Materials & Design201462: 288-295.
50 刘国栋. PW4000系列发动机高压压气机叶片损伤形式的分析[J]. 装备制造技术2020(5): 161-163.
  LIU G D. PW4000 series engine HPC module blade/vane damage types statistics and analysis[J]. Equipment Manufacturing Technology2020(5): 161-163 (in Chinese).
51 张涛, 赵振华, 杜文军, 等. 风扇/压气机叶片外物损伤验证方法及疲劳强度预测研究[J]. 推进技术202344(2): 246-251.
  ZHANG T, ZHAO Z H, DU W J, et al. Verification method of foreign object damage and fatigue strength prediction of fan/compressor blades[J]. Journal of Propulsion Technology202344(2): 246-251 (in Chinese).
52 ZHAO Z H, WANG L F, ZHANG J H, et al. Prediction of high-cycle fatigue strength in a Ti-17 alloy blade after foreign object damage[J]. Engineering Fracture Mechanics2021241: 107385.
53 王凌峰, 许祥胜, 赵振华, 等. 外物损伤对不锈钢模拟叶片疲劳强度的影响研究[J]. 推进技术202142(12): 2808-2817.
  WANG L F, XU X S, ZHAO Z H, et al. Effects of foreign object damage on fatigue strength of stainless steel simulated blades[J]. Journal of Propulsion Technology202142(12): 2808-2817 (in Chinese).
54 罗渝川, 韩新营, 罗晓利. 2006—2015年间中国民航事故及事故征候的统计分析[J]. 中国民航飞行学院学报201829(3): 21-24, 29.
  LUO Y C, HAN X Y, LUO X L. Statistic analysis based on accidents and incidents of China civil aviation during 2006-2015[J]. Journal of Civil Aviation Flight University of China201829(3): 21-24, 29 (in Chinese).
55 张海兵, 张泰峰, 郭奇. 航空发动机压气机叶片损伤分析与监控对策[J]. 无损检测202143(1): 15-18, 52.
  ZHANG H B, ZHANG T F, GUO Q. Damage analysis and monitoring measures of compressor blades of an aero engine[J]. Nondestructive Testing Technologying202143(1): 15-18, 52 (in Chinese).
56 舒畅, 程铭, 许煜, 等. 航空发动机压气机叶片外物损伤规律研究[J]. 机械工程学报201955(13): 87-94.
  SHU C, CHENG M, XU Y, et al. Study on foreign object damage regular pattern of aero engine compressor blades[J]. Journal of Mechanical Engineering201955(13): 87-94 (in Chinese).
57 马兴坤, 张雄飞, 马超. 浅谈民航发动机高压压气机叶片维修管理方法[J]. 航空维修与工程2018(9): 85-86.
  MA X K, ZHANG X F, MA C. Discussion on maintenance management method of the engine high pressure compressor blade[J]. Aviation Maintenance & Engineering2018(9): 85-86 (in Chinese).
58 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术202164(8): 22-28.
  ZHUO Y M, CHEN Y H, YANG C L. Research status and prospect of welding repair technology for aero-engine blades[J]. Aeronautical Manufacturing Technology202164(8): 22-28 (in Chinese).
59 阮雪茜, 张露, 韩秀峰, 等. 钛合金叶片的激光沉积修复技术研究[J]. 应用激光202141(3): 543-547.
  RUAN X Q, ZHANG L, HAN X F, et al. Research on laser deposition repair technology of titanium alloy blades[J]. Applied Laser202141(3): 543-547 (in Chinese).
60 张铀, 杨秀恩, 李俊辰, 等. 航空发动机压气机叶片凸台再制造修复方法: CN110592520A[P]. 2019-12-20.
  ZHANG Y, YANG X E, LI J C, et al. Remanufacturing repairing method of blade boss of gas compressor of aircraft engine: CN110592520A[P]. 2019-12-20 (in Chinese).
61 邹葆华. 刍议航空发动机的腐蚀问题及控制措施[J]. 中国新技术新产品2014(3): 188.
  ZOU B H. Discussion on corrosion problems of aero-engine and its control measures[J]. China New Technologies and Products2014(3): 188 (in Chinese).
62 余肖飞, 敖良忠, 吴梓祺. 沿海地带航空发动机腐蚀研究[J]. 现代工业经济和信息化202111(11): 179-182.
  YU X F, AO L Z, WU Z Q. Study on corrosion of aeroengine in coastal zone[J]. Modern Industrial Economy and Informationization202111(11): 179-182 (in Chinese).
63 李文辉, 温学杰, 李秀红, 等. 整体叶盘抛磨技术研究现状及其发展趋势[J]. 航空制造技术202265(17): 88-102.
  LI W H, WEN X J, LI X H, et al. Research status and development trend of blisk polishing technology[J]. Aeronautical Manufacturing Technology202265(17): 88-102 (in Chinese).
64 贾雨超, 迟关心, 张昆, 等. 闭式整体叶盘成组电极高效电弧成形加工技术[J]. 航空学报202243(4): 525605.
  JIA Y C, CHI G X, ZHANG K, et al. High-efficiency electrical arc machining of integral shrouded blisk using grouped electrode[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525605 (in Chinese).
65 LEE J N, YEH H L, SHIE M J, et al. Improvement in the efficiency of the five-axis machining of aerospace blisks[J]. Science Progress2022105(4): 368504221128776.
66 黄春峰. 现代航空发动机整体叶盘及其制造技术[J]. 航空制造技术200649(4): 94-100.
  HUANG C F. Modern aeroengine integral blisk and its manufacturing technology[J]. Aeronautical Manufacturing Technology200649(4): 94-100 (in Chinese).
67 柳万珠, 陈贵林, 梁忠效, 等. 压气机转子叶片类零件的制造与修复技术[J]. 航空制造技术201053(22): 36-39.
  LIU W Z, CHEN G L, LIANG Z X, et al. Manufacturing and repair technology for compressor rotor blade[J]. Aeronautical Manufacturing Technology201053(22): 36-39 (in Chinese).
68 孙明霞, 梁春华, 张世福. 激光技术在风扇/压气机整体叶盘结构修理中的应用[J]. 航空制造技术201356(9): 62-65.
  SUN M X, LIANG C H, ZHANG S F. Application of laser repairing technology for fan/compressor blisk[J]. Aeronautical Manufacturing Technology201356(9): 62-65 (in Chinese).
69 侯廷红, 何勇, 陈海生, 等. 压气机整体叶盘叶片损伤修复技术研究[J]. 航空维修与工程2019(4): 37-40.
  HOU T H, HE Y, CHEN H S, et al. Research on blade damage repair technology for compressor blisk[J]. Aviation Maintenance & Engineering2019(4): 37-40 (in Chinese).
70 李杰. 航空发动机整体叶盘维修解决方案[J]. 航空维修与工程2009(2): 25-26.
  LI J. DMLD, an advanced repair process for aero engine blisk[J]. Aviation Maintenance & Engineering2009(2): 25-26 (in Chinese).
71 MATEO A. On the feasibility of BLISK produced by linear friction welding[J]. Revista De Metalurgia201450(3): e023.
72 姚希珍, 胡泽. 钛合金整体叶盘线性摩擦焊技术综述[J]. 航空制造技术201154(16): 43-47.
  YAO X Z, HU Z. Linear friction welding technology for titanium alloy disc[J]. Aeronautical Manufacturing Technology201154(16): 43-47 (in Chinese).
73 MUKUNDHAN C, SIVARAJ P, BALASUBRAMANIAN V, et al. Microstructural features, tensile properties, and impact toughness of linear friction welded high-temperature alloy joints for blisk assembly applications[J]. Advances in Materials Science and Engineering20222022: 2233443.
74 黄艳松, 马俊文, 冯保东. 先进焊接技术在发动机整体叶盘修复中的应用[J]. 新技术新工艺2012(8): 78-81.
  HUANG Y S, MA J W, FENG B D. Application of advanced welding technology on repairing of aero engine blisks[J]. New Technology & New Process2012(8): 78-81 (in Chinese).
75 KUMARI S, SATYANARAYANA D V V, SRINIVAS M. Failure analysis of gas turbine rotor blades[J]. Engineering Failure Analysis201445: 234-244.
76 BALLAL D R, ZELINA J. Progress in aeroengine technology (1939: 2003)[J]. Journal of Aircraft200441(1): 43-50.
77 赵云松, 张迈, 郭小童, 等. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程202048(9): 24-33.
  ZHAO Y S, ZHANG M, GUO X T, et al. Recent progress in service induced degradation of turbine blades of aeroengine due to overheating[J]. Journal of Materials Engineering202048(9): 24-33 (in Chinese).
78 韩世进, 常城. 发动机高压涡轮叶片的氧化损伤分析[J]. 航空维修与工程2022(3): 26-28.
  HAN S J, CHANG C. Oxidation damage analysis of high-pressure turbine blades of engine[J]. Aviation Maintenance & Engineering2022(3): 26-28 (in Chinese).
79 PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science2002296(5566): 280-284.
80 ZHU W, CAI M, YANG L, et al. The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J]. Surface and Coatings Technology2015276: 160-167.
81 CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annual Review of Materials Research200333: 383-417.
82 杨晓军, 王瑛琦, 刘智刚. 航空发动机涡轮叶片损伤分析[J]. 机械工程与自动化2017(3): 203-205.
  YANG X J, WANG Y Q, LIU Z G. Analysis of damaged blades of aero-engine turbine[J]. Mechanical Engineering & Automation2017(3): 203-205 (in Chinese).
83 魏铮, 胡捷. 热障涂层失效机制和寿命预测研究概述[J]. 装备机械2013(4): 2-6.
  WEI Z, HU J. Summary of investigation on failure mechanism and lifetime prediction of thermal barrier coatings[J]. The Magazine on Equipment Machinery2013(4): 2-6 (in Chinese).
84 MADHWAL M, JORDAN E H, GELL M. Failure mechanisms of dense vertically-cracked thermal barrier coatings[J]. Materials Science and Engineering: A2004384(1-2): 151-161.
85 郭伟, 董丽虹, 王慧鹏, 等. 基于红外热像技术的涡轮叶片损伤评价研究进展[J]. 航空学报201637(2): 429-436.
  GUO W, DONG L H, WANG H P, et al. Research progress of damage estimation for turbine blades based on infrared thermographic technology[J]. Acta Aeronautica et Astronautica Sinica201637(2): 429-436 (in Chinese).
86 林杰威, 张俊红, 张桂昌, 等. 基于连续非线性损伤的航空发动机叶片疲劳研究[J]. 机械工程学报201046(18): 66-70.
  LIN J W, ZHANG J H, ZHANG G C, et al. Study on fatigue damage of aero-engine blade based on non-linear continuum damage model[J]. Journal of Mechanical Engineering201046(18): 66-70 (in Chinese).
87 KIM C Y, CHOI S J. A study on failure rate prediction of aircraft gas turbine engine turbine blade[J]. Journal of the Korean Society for Aviation and Aeronautics201927(4): 21-26.
88 CHABOCHE J L, GALLERNEAU F. An overview of the damage approach of durability modelling at elevated temperature[J]. Fatigue & Fracture of Engineering Materials & Structures200124(6): 405-418.
89 GUO X T, ZHENG W W, XIAO C B, et al. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating[J]. Engineering Failure Analysis2019103: 308-318.
90 CARTER T J. Common failures in gas turbine blades[J]. Engineering Failure Analysis200512(2): 237-247.
91 BREMER C. Final report summary—Automated repair and overhaul system for aero turbine engine components (AROSATEC):502937[R]. Luxembourg: Publications Office of the European Union, 2006.
92 POLYANSKII S N, BUTAKOV S V, OLKOV I S,et al. Repair of turbine components by abrasive-jet machining[J]. Journal of Machinery Manufacture and Reliability202150(1): 72-78.
93 BALASUBRAMANIAN T S, BALASUBRAMANIAN V, MUTHU MANICKAM M A. Fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V alloy[J]. Materials & Design201132(8-9): 4509-4520.
94 NGORET J K, KOMMULA V P. Role of aluminide coating degradation on Inconel 713 LC used for compressor turbines (CT) of short-haul aircrafts[J]. MRS Advances20183(38): 2281-2296.
95 VILAR R, ALMEIDA A. Repair and manufacturing of single crystal Ni-based superalloys components by laser powder deposition—A review[J]. Journal of Laser Applications201527(S1): S17004.
96 YILMAZ O, GINDY N, GAO J. A repair and overhaul methodology for aeroengine components[J]. Robotics and Computer-Integrated Manufacturing201026(2): 190-201.
97 WANG T, DING H P, TANG J, et al. Recent repair technology for aero-engine blades[J]. Recent Patents on Engineering20159(2): 132-141.
98 BRAUNY P, HAMMERSCHMIDT M, MALIK M. Repair of air?cooled turbine vanes of high?performance aircraft engines?problems and experience[J]. Materials Science and Technology19851(9): 719-727.
99 MIGLIETTI W, SUMMERSIDE I, HOEVEL S, et al. Repair process technology development and experience for W501F row 1 hot gas path blades[C]∥ Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 957-968.
100 ZHU Y Y, CHEN B, TANG H B, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy[J]. Transactions of Nonferrous Metals Society of China201828(1): 36-46.
101 TANG Q H, ZHOU D, WANG Y L, et al. Laser cleaning of sulfide scale on compressor impeller blade[J]. Applied Surface Science2015355: 334-340.
102 ZHANG X C, LI W, ADKISON K M, et al. Damage reconstruction from tri-dexel data for laser-aided repairing of metallic components[J]. The International Journal of Advanced Manufacturing Technology201896(9): 3377-3390.
103 李小强, 程准, 邱昊, 等. 镍基高温合金焊接修复技术的研究进展[J]. 材料导报201731(S1): 541-545.
  LI X Q, CHENG Z, QIU H, et al. Research progress on welding repair technology of nickel-based superalloy[J]. Materials Reports201731(S1): 541-545 (in Chinese).
104 RITTINGHAUS S K, SCHMELZER J, RACKEL M W, et al. Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades[J]. Materials202013(19): 4392.
105 WU B H, WANG J, ZHANG Y, et al. Adaptive location of repaired blade for multi-axis milling[J]. Journal of Computational Design and Engineering20152(4): 261-267.
106 KAIERLE S, OVERMEYER L, ALFRED I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting[J]. CIRP Journal of Manufacturing Science and Technology201719: 196-199.
107 NIE X F, HE W F, ZANG S L, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology2014253: 68-75.
108 ZHAO Y S, ZHANG M, GUO X T,et al. Recent progress in service induced degradation of turbine blades of aeroengines due to overheating[J].Journal of Materials Engineering202048(9): 24-33.
109 DENKENA B, BOESS V, NESPOR D, et al. Engine blade regeneration: A literature review on common technologies in terms of machining[J]. The International Journal of Advanced Manufacturing Technology201581(5): 917-924.
110 张建平. 德国MTU公司民用航空发动机高压涡轮叶片维修技术[J]. 航空制造技术200447(10): 70-71.
  ZHANG J P. Maintenance technology of high pressure turbine blades of civil aviation engine of MTU company in Germany[J]. Aeronautical Manufacturing Technology200447(10): 70-71 (in Chinese).
111 LESYK D A, MARTINEZ S, PEDASH O O, et al. Nickel superalloy turbine blade parts printed by laser powder bed fusion: Thermo-mechanical post-processing for enhanced surface integrity and precipitation strengthening[J]. Journal of Materials Engineering and Performance202231(8): 6283-6299.
112 韩晓东, 杨秀娟. 航空发动机涡轮叶片修复中的裂纹控制[J]. 科技创新与应用2017(36): 166-167.
  HAN X D, YANG X J. Crack control in aero-engine turbine blade repair[J]. Technology Innovation and Application2017(36): 166-167 (in Chinese).
113 贾宜委, 王鹤峰, 王宇迪, 等. 航空发动机涡轮叶片热障涂层研究现状[J]. 表面技术202352(11): 139-154.
  JIA Y W, WANG H F, WANG Y D, et al. Current status of research on thermal barrier coating of aero-engine turbine blades[J]. Surface Technology202352(11):139-154 (in Chinese).
114 张欢. 航空发动机叶片原位磨削机械臂设计及关键技术研究[D]. 南京: 南京航空航天大学, 2021.
  ZHANG H. Design and key technology research of in-situ grinding robotic arm for aero-engine blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
115 BUCKINGHAM R, CHITRAKARAN V, CONKIE R, et al. Snake-arm robots: A new approach to aircraft assembly: 2007-01-3870[R]. Warrendale: SAE International, 2007.
116 吴娜. 缺口型硬物损伤对叶片强度及气动性能的影响研究[D]. 南京: 南京航空航天大学, 2019.
  WU N. Research on influence of notched foreign object damage on strength and aerodynamic performance of blade[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
117 孙永, 曹平亚, 刘乃刚. 视频内窥设备辅助下的航空发动机压气机转子叶片原位修复技术研究[J]. 中国科技纵横2012(12): 84-85.
  SUN Y, CAO P Y, LIU N G. Research on in situ repair technology of aero-engine compressor rotor blade with the assistance of video endoscope equipment[J]. China’s Science and Technology2012(12): 84-85 (in Chinese).
118 姜春英, 李清野, 崔峰, 等. 一种新型航空发动机气动打磨仪数值模拟与试验研究[J]. 机床与液压201947(22): 41-46.
  JIANG C Y, LI Q Y, CUI F, et al. Numerical simulation and experimental study of a new type of aero engine air grinding instrument[J]. Machine Tool & Hydraulics201947(22): 41-46 (in Chinese).
119 李清野. 航空发动机气动打磨仪结构设计与优化[D]. 沈阳: 沈阳航空航天大学, 2019.
  LI Q Y. Structural design and optimization of aero-engine pneumatic grinding instrument[D].Shenyang: Shenyang Aerospace University, 2019 (in Chinese).
120 DONG X, PALMER D, AXINTE D, et al. In-situ repair/maintenance with a continuum robotic machine tool in confined space[J]. Journal of Manufacturing Processes201938: 313-318.
121 WANG M F, PALMER D, DONG X, et al. Design and development of a slender dual-structure continuum robot for in-situ aeroengine repair[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 5648-5653.
122 WANG M F, DONG X, BA W M, et al. Design, modelling and validation of a novel extra slender continuum robot for in situ inspection and repair in aeroengine[J]. Robotics and Computer-Integrated Manufacturing202167: 102054.
123 ALATORRE D, NASSER B, RABANI A, et al. Robotic boreblending: The future of in-situ gas turbine repair[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 1401-1406.
124 ALATORRE D, NASSER B, RABANI A, et al. Teleoperated, in situ repair of an aeroengine: Overcoming the internet latency hurdle[J]. IEEE Robotics & Automation Magazine201926(1): 10-20.
125 CHA D, DIAZ O G, LIAO Z, et al. Development of a novel system for in situ repair of aeroengine airfoil via pulsed laser ablation[J]. Journal of Manufacturing Systems202055: 126-131.
126 JONATHAN G D. Laser process optimisation for in situ repair of aero-engine components[D]. Nottingham: University of Nottingham, 2017.
127 赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展[J]. 航空学报202041(10): 023685.
  ZHAO B, JIANG Y, BIE W B. Ultrasonic rolling technology in surface strengthening: Progress in research and applications[J]. Acta Aeronautica et Astronautica Sinica202041(10): 023685 (in Chinese).
128 王燕礼, 朱有利, 杨嘉勤. 滚压强化技术及在航空领域研究应用进展[J]. 航空制造技术201861(5): 75-83.
  WANG Y L, ZHU Y L, YANG J Q. Rolling reinforcement technology and its research application progress in aviation field[J]. Aeronautical Manufacturing Technology201861(5): 75-83 (in Chinese).
129 B?CKER V, KLOCKE F, WEGNER H, et al. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling[J]. IOP Conference Series: Materials Science and Engineering201010: 012134.
130 PREVéY P, HORNBACH D, JACOBS T L, et al. Improved damage tolerance in titanium alloy fan blades with low plasticity burnishing[C]∥ 2002 International Surface Engineering Conference, 2002.
131 许娟, 李鹏涛. 一种用于叶片原位维修的维修装置及操作方法: CN114905284A[P]. 2022-08-16.
  XU J, LI P T. Maintenance device for blade in-situ maintenance and operation method: CN114905284A[P]. 2022-08-16 (in Chinese).
132 胡钰昊, 田伟, 刘砚飞, 等. 模拟打伤/抛修缺口对TC17钛合金叶片振动疲劳性能的影响[J]. 航空制造技术202164(6): 96-101.
  HU Y H, TIAN W, LIU Y F, et al. Effect of damaged and repaired notch on vibration fatigue property of TC17 titanium alloy simulated blades[J]. Aeronautical Manufacturing Technology202164(6): 96-101 (in Chinese).
133 贾旭, 胡绪腾, 朱自佳, 等. FOD缺口型损伤对TC4疲劳极限强度的影响[J]. 航空动力学报201833(7): 1584-1594.
  JIA X, HU X T, ZHU Z J, et al. Effect of FOD notch-type damage on fatigue limit strength of TC4[J]. Journal of Aerospace Power201833(7): 1584-1594 (in Chinese).
134 胡绪腾, 贾旭, 朱自佳, 等. 凹坑型硬物损伤对TC4材料疲劳强度的影响[J]. 航空动力学报201833(4): 969-979.
  HU X T, JIA X, ZHU Z J, et al. Effect of dent-type foreign object damage on fatigue strength of TC4 material[J]. Journal of Aerospace Power201833(4): 969-979 (in Chinese).
135 NEUBER H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law[J]. Journal of Applied Mechanics196128(4): 544-550.
136 INCE A. A mean stress correction model for tensile and compressive mean stress fatigue loadings[J]. Fatigue & Fracture of Engineering Materials & Structures201740(6): 939-948.
137 YU M, DUQUESNAY D, TOPPER T. Notch fatigue behaviour of SAE1045 steel[J]. International Journal of Fatigue198810(2): 109-116.
138 YVONNE O S. On the high- and low-cycle fatigue of aero-engine compressor blades following foreign object damage[D]. Oxford: University of Oxford, 2004.
139 郑楚鸿. 高周疲劳设计方法: 应力场强法的研究[D]. 北京: 清华大学, 1984.
  ZHENG C H. High cycle fatigue design method: Research on stress field strength method[D]. Beijing: Tsinghua University, 1984 (in Chinese).
140 姚卫星, 顾怡. 论疲劳缺口减缩系数Kf [J]. 工程力学199512(3): 91-96.
  YAO W X, GU Y. On the fatigue notch factor Kf [J]. Engineering Mechanics199512(3): 91-96 (in Chinese).
141 赵旭升. 典型服役破损叶片修复自适应加工关键技术研究[D]. 武汉: 华中科技大学, 2019.
  ZHAO X S. Research on key techniques of adaptive machining for repair of typical damaged blade[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
142 赵旭升, 杨建中, 陈吉红, 等. 服役破损叶片的曲面重构及刀路生成方法[J]. 中国机械工程201930(24): 2906-2915, 2924.
  ZHAO X S, YANG J Z, CHEN J H, et al. Surface reconstruction and tool path generation method for remanufacturing of damaged blades[J]. China Mechanical Engineering201930(24): 2906-2915, 2924 (in Chinese).
143 吴志新, 昂给拉玛, 张云, 等. 航空发动机涡轮叶片叶尖损伤修复自适应加工技术研究与应用[J]. 制造技术与机床2021(7): 93-97.
  WU Z X, ANG G, ZHANG Y, et al. Research and application of adaptive machining technology for repairing blade tip damage of aero-engine turbine blades[J]. Manufacturing Technology & Machine Tool2021(7): 93-97 (in Chinese).
144 叶晓华. 航空叶片叶尖自适应修复软件开发[D]. 武汉: 华中科技大学, 2016.
  YE X H. Development of software for aeronautic blade tip adaptive repairation[D].Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese).
145 陈裕芹. 反求工程在发动机叶片检测中的应用研究[D]. 广州: 广东工业大学, 2011.
  CHEN Y Q. The research of the use of reverse engineering in engine blade inspection[D].Guangzhou: Guangdong University of Technology, 2011 (in Chinese).
146 陆晶文. 反求工程在航空发动机叶片维修中的应用探索[J]. 科技信息2013(9): 115.
  LU J W. Application of reverse engineering in aero-engine blade maintenance[J]. Science & Technology Information2013(9): 115 (in Chinese).
147 陈振林, 陈志同, 朱正清, 等. 基于逆向工程的航空发动机叶片再制造修复方法研究[J]. 航空制造技术202063(S2): 80-86, 93.
  CHEN Z L, CHEN Z T, ZHU Z Q, et al. Research on remanufacturing and repairing method of aero-engine blades based on reverse engineering[J]. Aeronautical Manufacturing Technology202063(S2): 80-86, 93 (in Chinese).
148 聂兆伟, 熊丹丹. 航空发动机叶片自适应修复目标曲面重构[J]. 计算机集成制造系统201925(1): 53-60.
  NIE Z W, XIONG D D. Target surface research of aero-engine blade adaptive repairing driven by image model[J]. Computer Integrated Manufacturing Systems201925(1): 53-60 (in Chinese).
Outlines

/