special column

Research progress on laser selective melting technology for high-performance manufacturing of aero-engines

  • Yunlong ZHOU ,
  • Yi MA ,
  • Yingchun GUAN
Expand
  • 1.School of Mechanical Engineering and Automation,Beihang University,Beijing  100191,China
    2.National Engineering Laboratory of Additive Manufacturing for Large Metallic Components,Beihang University,Beijing  100191,China

Received date: 2023-08-31

  Revised date: 2023-09-27

  Accepted date: 2023-10-20

  Online published: 2023-11-07

Supported by

Ningbo Science and Technology Major Project(2023Z012)

Abstract

Additive manufacturing technology has the capability of breaking through traditional manufacturing constraints, thus enabling the integrated design and manufacturing of complex geometric structures. Simultaneously, this technology contributes to enhancing the reliability of product components with extensive potential applications in the aerospace industry. To address the common issues related to the process and performance, this study, focusing on the Selective Laser Melting (SLM) technique within additive manufacturing for aircraft engines, initially revisits the regulation of material structure and properties through a perspective of technical optimization, including large-area multi-beam technology and field-assisted techniques. Subsequently, by delving into cutting-edge techniques such as quality online monitoring and intelligent machine learning control, the optimization role of monitoring and predicting in the early and middle stages of the forming process is discussed. Then, aiming at providing better guidance for material selection and performance control, the key aerospace engine materials for SLM formation is systematically summarized. Lastly, a review of current SLM technology solutions and types of aerospace engine materials is concluded, along with an outlook on future development prospects so as to provide valuable insights for the field of aerospace engine manufacturing.

Cite this article

Yunlong ZHOU , Yi MA , Yingchun GUAN . Research progress on laser selective melting technology for high-performance manufacturing of aero-engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 629508 -629508 . DOI: 10.7527/S1000-6893.2023.29508

References

1 TAN C L, WENG F, SUI S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture2021170: 103804.
2 GUO N N, LEU M C. Additive manufacturing: technology, applications and research needs[J]. Frontiers of Mechanical Engineering20138(3): 215-243.
3 XU Z Y, WANG Y D. Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances[J]. Chinese Journal of Aeronautics202134(2): 28-53.
4 陈超越, 王江, 王瑞鑫, 等. 航空发动机及燃气轮机用关键材料的激光增材制造研究进展[J]. 科技导报202341(5): 34-48.
  CHEN C Y, WANG J, WANG R X, et al. Research progress and prospect of additive manufacturing of key materials for aeroengines and gas turbines[J]. Science and Technology Review202341(5): 34-48 (in Chinese).
5 张海洲, 白洁, 马瑞, 等. 激光选区熔化成形技术在航空航天发动机制造领域的研究与应用现状[J]. 推进技术202344(3): 6-21.
  ZHANG H Z, BAI J, MA R, et al. Current progress and application of selective laser melting technology in aerospace engine manufacturing[J]. Journal of Propulsion Technology202344(3): 6-21 (in Chinese).
6 南极熊3D打印网. 通用增材业务刘志刚: 2019年GE航空将3D打印近40000个金属件[EB/OL]. (2018-07-29)[2023-08-25]. .
  ANTABEAR THE 3D PRINGTING TECHNOLOGY. General additive business liu zhigang: GE aviation will 3D print nearly 40000 metal parts in 2019[EB/OL]. (2018-07-29)[2023-08-25]. (in Chinese).
7 安国进. 金属增材制造技术在航空航天领域的应用与展望[J]. 现代机械2019(3): 39-43.
  AN G J. Application and prospect of metal additive manufacturing technology in aerospace[J]. Modern Machinery2019(3): 39-43 (in Chinese).
8 赵志国, 柏林, 李黎, 等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术2014(19): 46-49.
  ZHAO Z G, BO L, LI L, et al. Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology2014(19): 46-49 (in Chinese).
9 Shirley-3D. 金属3D打印技术--SLM应用案例[EB/OL]. (2020-08-09)[2023-08-25]. .
  SHIRLEY-3D. Metal 3D printing technology - SLM application cases[EB/OL]. (2020-08-09)[2023-08-25]. (in Chinese).
10 ZHANG M X, LIU C M, SHI X Z, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting[J]. Applied Sciences20166(11): 304.
11 JI Z, HAN Q. A novel image feature descriptor for SLM spattering pattern classification using a consumable camera[J]. The International Journal of Advanced Manufacturing Technology2020110: 2955-2976.
12 ZOU M, JIANG W G, QIN Q H, et al. Optimized XGBoost model with small dataset for predicting relative density of Ti-6Al-4V parts manufactured by selective laser melting[J]. Materials202215(15): 5298.
13 周安, 刘秀波, 刘庆帅, 等. 选区激光熔化成形过程监测技术研究进展[J]. 中国表面工程202336(4): 36-50.
  ZHOU A, LIU X B, LIU Q S, et al. Progress of in-process monitoring techniques for selective laser melting[J]. China Surface Engineering202336(4): 36-50 (in Chinese).
14 倪江涛, 周庆军, 衣凤, 等. 激光增材制造技术发展及在航天领域的应用进展[J]. 稀有金属202246(10): 1365-1382.
  NI J T, ZHOU Q J, YI F, et al. Development of laser additive manufacturing technology and its application progress in aerospace field[J]. Chinese Journal of Rare Metals202246(10): 1365-1382 (in Chinese).
15 GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews201257(3): 133-164.
16 ABOULKHAIR T N, MASKERY I, TUCK C, et al. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: influence of heat treatment and surface quality[J]. Materials and Design2016104: 174-182.
17 曾庆鹏, 傅广, 任治好, 等. 多光束激光选区熔化研究进展及展望[J/OL]. 材料工程, (2023-02-14)[2023-08-20]. .
  ZENG Q P, FU G, REN Z H, et al. Progress and prospect of multi-beam selective laser melting[J/OL]. Journal of Materials Engineering, (2023-02-14)[2023-08-20]. (in Chinese).
18 雷杨, 房立家, 孙兵兵, 等. 多激光束选区熔化成形GH4169微观组织及力学性能[J]. 焊接技术202049(7): 27-32, 5-6.
  LEI Y, FANG L J, SUN B B, et al. Microstructures and mechanical properties of GH4169 alloy fabricated by multi-laser beam selective laser melting[J]. Welding Technology202049(7): 27-32, 5-6 (in Chinese).
19 SANCHEZ S, HYDE C J, ASHCROFT I A, et al. Multi-laser scan strategies for enhancing creep performance in LPBF[J]. Additive Manufacturing202141: 101948.
20 LIU J, DONG S Y, JIN X, et al. Quality control of large-sized alloy steel parts fabricated by multi-laser selective laser melting (ML-SLM)[J]. Materials and Design2022223: 111209.
21 WEI K W, LI F Z, HUANG G, et al. Multi-laser powder bed fusion of Ti-6Al-4V alloy: defect, microstructure, and mechanical property of overlap region[J]. Materials Science and Engineering A2021802: 140644.
22 LI F Z, WANG Z M, ZENG X Y. Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting[J]. Materials Letters2017199: 79-83.
23 YIN J, WANG D Z, WEI H L, et al. Dual-beam laser-matter interaction at overlap region during multi-laser powder bed fusion manufacturing[J]. Additive Manufacturing202146: 102178.
24 杨圣昆, 谢印开, 胡全栋, 等. 拼接顺序对双激光选区熔化成形TC4钛合金成形性的影响[J]. 航空制造技术202265(5): 93-99.
  YANG S K, XIE Y K, HU Q D, et al. Effect of scan order of overlap area on forming qualities of TC4 alloy fabricated by selective dual-beam laser melting technique[J]. Aeronautical Manufacturing Technology202265(5): 93-99 (in Chinese).
25 李鹏, 申红斌, 王志敏, 等. 拼接策略对多光束激光选区熔化成形TA15钛合金组织及性能的影响[J]. 国防制造技术2021(4): 27-30.
  LI P, SHEN H B, WANG Z M, et al. Effect of splicing strategy on microstructure and properties of TA15 titanium alloy formed by multi-beam laser selective melting[J]. Defense Manufacturing Technology2021(4): 27-30 (in Chinese).
26 张思远, 王猛, 王冲, 等. 拼接方式对多光束SLM成形TC4成形特性的影响[J]. 应用激光201939(4): 544-549.
  ZHANG S Y, WANG M, WANG C, et al. The effect of overlap methods on forming qualities of TC4 alloy fabricated by multi-beam selective laser melting technique[J]. Applied Laser201939(4): 544-549 (in Chinese).
27 LIU B, KUAI Z Z, LI Z H, et al. Performance consistency of AlSi10Mg alloy manufactured by simulating multi laser beam selective laser melting (SLM): microstructures and mechanical properties[J]. Materials201811(12): 2354.
28 LI Z H, LIU W P, LIU B, et al. Difference-extent of microstructure and mechanical properties: simulating multi-laser selective melting Ti6Al4V[J]. Optics and Laser Technology2022153: 108249.
29 佘保桢. 多光束激光选区熔化成形TA15合金的基础研究[D]. 武汉: 华中科技大学, 2019: 87-88.
  SHE B Z. Fundamental study on multi-beam selective laser melting of TA15 alloy[D]. Wuhan: Huazhong University of Science and Technology, 2019: 87-88 (in Chinese).
30 岑伟洪, 汤辉亮, 张江兆, 等. 提升分区搭接质量的激光选区熔化扫描策略[J]. 中国激光202148(18): 1802018.
  CEN W H, TANG H L, ZHANG J Z, et al. Scanning strategy to improve the overlapping quality of partition in selective laser melting[J]. Chinese Journal of Lasers202148(18): 1802018 (in Chinese).
31 WANG D, WANG H, LIU Z X, et al. Influence mechanism of laser delay on internal defect and surface quality in stitching region of 316L stainless steel fabricated by dual-laser selective laser melting[J]. Journal of Manufacturing Processes202394: 35-48.
32 HEELING T, WEGENER K. The effect of multi-beam strategies on selective laser melting of stainless steel 316L[J]. Additive Manufacturing201822: 334-342.
33 ATTARIANI H, PETITJEAN S R, DOUSTI M. A digital twin of synchronized circular laser array for powder bed fusion additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology2022123: 1433-1440.
34 HE C, RAMANI K S, OKWUDIRE C E. An intelligent scanning strategy (SmartScan) for improved part quality in multi-laser PBF additive manufacturing[J]. Additive Manufacturing202364: 103427.
35 BERGMUELLER S, SCHEIBER J, KASERER L, et al. Enhancing equiaxed grain formation in a high-alloy tool steel using dual laser powder bed fusion[J]. Additive Manufacturing202374: 103727.
36 AMANO H, ISHIMOTO T, HAGIHARA K, et al. Impact of gas flow direction on the crystallographic texture evolution in laser beam powder bed fusion[J]. Virtual and Physical Prototyping202318(1): e2169172.
37 BAEHR S, KLECKER T, PIELMEIER S, et al. Experimental and analytical investigations of the removal of spatters by various process gases during the powder bed fusion of metals using a laser beam[J/OL]. Progress in Additive Manufacturing, (2023-08-05)[2023-10-13]. .
38 KJER M B, PAN Z, NADIMPALLI V K, et al. Experimental analysis and spatial component impact of the inert cross flow in open-architecture laser powder bed fusion[J]. Journal of Manufacturing and Materials Processing20237(4): 143.
39 ZOU S, XIAO H B, YE F P, et al. Numerical analysis of the effect of the scan strategy on the residual stress in the multi-laser selective laser melting[J]. Results in Physics202016: 103005.
40 XU G G, JIANG W G, SUN Y Y, et al. Particle-scale computational fluid dynamics simulation on selective parallel dual-laser melting of nickel-based superalloy[J]. Journal of Manufacturing Processes202273: 197-206.
41 PROMOPPATUM P. Dual-laser powder bed fusion additive manufacturing: computational study of the effect of process strategies on thermal and residual stress formations[J]. The International Journal of Advanced Manufacturing Technology2022121: 1337-1351.
42 李泓历, 傅广, 任治好, 等. 多光束激光选区熔化拼接区域熔池动力学行为数值模拟[J].表面技术202352(11): 406-418.
  LI H L, FU G, REN Z H, et al. Numerical simulation of molten pool dynamics in multi-beam laser selective fusion splicing region[J]. Surface Technology202352(11): 406-418 (in Chinese).
43 BALL A K, BASAK A. AI Modeling for high-fidelity heat transfer and thermal distortion forecast in metal additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology2023128: 2995-3010.
44 GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science2021372(6545): eabg1487.
45 WEI C, LI L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion[J]. Virtual and Physical Prototyping202116(3): 1-25.
46 谢寅, 滕庆, 沈沐宇, 等. 多激光粉床熔融成形GH3536合金搭接区域组织与性能特征研究[J]. 中国激光202350(8): 0802303.
  XIE Y, TENG Q, SHEN M Y, et al. Study on microstructure and properties of overlap region of GH3536 alloy processed by multi-laser powder bed fusion[J]. Chinese Journal of Lasers202350(8): 0802303 (in Chinese).
47 LI Z H, KUAI Z Z, BAI P K, et al. Microstructure and tensile properties of AlSi10Mg alloy manufactured by multi-laser beam selective laser melting (SLM)[J]. Metals20199(12): 1337.
48 WEN S F, YAN C Z, WEI Q S, et al. Investigation and development of large-scale equipment and high performance materials for powder bed laser fusion additive manufacturing[J]. Virtual and Physical Prototyping20149(4): 213-223.
49 刘正武, 侯春杰, 王联凤, 等. 多激光束选区熔化成形技术研究[J]. 制造技术与机床2018(1): 56-59.
  LIU Z W, HOU C J, WANG L F, et al. Study on selective multi-laser beam melting technology[J]. Manufacturing Technology and Machine Tool2018(1): 56-59 (in Chinese).
50 SOLUTIONS SLM. Meet the NXG XII 600: A new era in manufacturing[EB/OL]. [2023-08-27]. .
51 BRIGHT LASER TECHNOLOGIES. BLT-S600: Bigger than bigger, let’s achieve more[EB/OL]. [2023-08-27]. .
52 王泽敏, 黄文普, 曾晓雁. 激光选区熔化成形装备的发展现状与趋势[J]. 精密成形工程201911(4): 21-28.
  WANG Z M, HUANG W P, ZENG X Y. Status and prospect of selective laser melting machines[J]. Journal of Netshape Forming Engineering201911(4): 21-28 (in Chinese).
53 樊世冲, 殷凤仕, 任智强, 等. 基于电弧的多能场复合增材制造技术研究现状[J]. 表面技术202352(8): 49-70.
  FAN S C, YIN F S, REN Z Q, et al. Research status of multi-energy field composite additive manufacturing technology based on arc[J]. Surface Technology202352(8): 49-70 (in Chinese).
54 HU Y B. Recent progress in field-assisted additive manufacturing: materials, methodologies, and applications[J]. Materials Horizons20218(3): 885-911.
55 SAFAEE S, SCHOCK M, JOYEE E B, et al. Field-assisted additive manufacturing of polymeric composites[J]. Additive Manufacturing202251: 102642.
56 赵占勇, 白培康, 刘斌, 等. 一种强磁场下选择性激光熔化SLM成形缸: 中国, CN205888085U[P]. 2017-01-18.
  ZHAO Z Y, BAI P K, LIU B, et al. A selective laser melting SLM forming cylinder under strong magnetic field: China, CN205888085U[P]. 2017-01-18 (in Chinese).
57 刘胜, 李辉, 申胜男, 等. 一种热磁耦合场协同选择性激光熔化装置及其加热方法: 中国, CN108421976A[P]. 2019-09-17.
  LIU S, LI H, SHEN S N, et al. The invention relates to a thermal-magnetic coupling field cooperative selective laser melting device and a heating method thereof: China, CN108421976A[P]. 2019-09-17 (in Chinese).
58 FAN W, TAN H, LIN X, et al. Microstructure formation of Ti-6Al-4V in synchronous induction assisted laser deposition[J]. Materials and Design2018160: 1096-1105.
59 TODARO C J, EASTON M A, QIU D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound[J]. Nature Communications202011(1): 142.
60 FAN X Q, FLEMING T G, REES D T, et al. Thermoelectric magnetohydrodynamic control of melt pool flow during laser directed energy deposition additive manufacturing[J]. Additive Manufacturing202371: 103587.
61 KANG N, YUAN H, CODDET P, et al. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field[J]. Materials Science and Engineering C201770: 405-407.
62 DU D F, HALEY C J, DONG A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy[J]. Materials and Design2019181: 107923.
63 KANG N, CODDET P, WANG J, et al. A novel approach to in-situ produce functionally graded silicon matrix composite materials by selective laser melting[J]. Composite Structures2017172: 251-258.
64 程坦, 张振雨, 刘演冰, 等. 在线稳恒磁场对激光选区熔化成形GH3536组织和性能各向异性的影响[J]. 中国激光202249(8): 0802017.
  CHENG T, ZHANG Z Y, LIU Y B, et al. Effects of online static magnetic field on anisotropy of microstructure and mechanical properties of GH3536 fabricated by selective laser melting[J]. Chinese Journal of Lasers202249(8): 0802017 (in Chinese).
65 ZHANG B, SHIRVANI K, TAHERI M, et al. Effect of TiC and magnetic field on microstructure and mechanical properties of IN738 superalloy processed by selective laser melting[J]. Journal of Materials Engineering and Performance202433: 3494-3509.
66 席丽霞, 陆秋阳, 顾冬冬. 一种基于超声处理辅助激光 3 D打印纳米粒子修饰Al-Cu合金的晶粒细化方法: 中国, CN113600833A[P]. 2022-10-11.
  XI L X, LU Q Y, GU D D. A method for grain refinement of Al-Cu alloy modified by ultrasonic processing assisted laser 3 D printing nanoparticles: China, CN113600833A[P]. 2022-10-11 (in Chinese).
67 TAHERI M, RAZAVI M. The effect of ultrasonic field on the microstructure and corrosion behavior of Fe-based amorphous coating applied to selective laser melting[J]. Materials Research Express202310(7): 076508.
68 MüLLER A V, SCHLICK G, NEU R, et al. Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 ℃[J]. Nuclear Materials and Energy201919: 184-188.
69 WANG J, FAUTRELLE Y, REN Z M, et al. Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field[J]. Applied Physics Letters2012101(25): 251904.
70 HU S D, HOU L, WANG K, et al. Effect of transverse static magnetic field on radial microstructure of hypereutectic aluminum alloy during directional solidification[J]. Journal of Materials Science and Technology202176(17): 207-214.
71 LI X, FAUTRELLE Y, GAGNOUD A, et al. Effect of a weak transverse magnetic field on solidification structure during directional solidification[J]. Acta Materialia201464: 367-381.
72 ZHOU H X, SONG C H, YANG Y Q, et al. The microstructure and properties evolution of SS316L fabricated by magnetic field-assisted laser powder bed fusion[J]. Materials Science and Engineering A2022845: 143216.
73 杜大帆, 董安平, 孙宝德, 等. 一种减少激光选区熔化成型构件孔隙率的方法: 中国, CN112974803A[P]. 2022-08-23.
  DU D F, DONG A P, SUN B D, et al. The invention relates to a method for reducing the porosity of a laser selective melting forming member: China, CN112974803A[P]. 2022-08-23 (in Chinese).
74 CHEN L W, LI H, LIU S, et al. Simulation of surface deformation control during selective laser melting of AlSi10Mg powder using an external magnetic field[J]. AIP Advances20199(4): 045012.
75 ZHU W L, YU S, CHEN C Y, et al. Effects of static magnetic field on the microstructure of selective laser melted inconel 625 superalloy: numerical and experiment investigations[J]. Metals202111(11): 1846.
76 ZHOU Z, YAO C F, ZHAO Y, et al. Effect of ultrasonic impact treatment on the surface integrity of nickel alloy 718[J]. Advances in Manufacturing20219: 160-171.
77 CAO Y, ZHANG Y C, MING W Y, et al. Review: the metal additive-manufacturing technology of the ultrasonic-assisted wire-and-arc additive-manufacturing process[J]. Metals202313(2): 398.
78 YUAN D, SHAO S Q, GUO C H, et al. Grain refining of Ti-6Al-4V alloy fabricated by laser and wire additive manufacturing assisted with ultrasonic vibration[J]. Ultrasonics Sonochemistry202173: 105472.
79 TAN C L, LI R S, SU J L, et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture2023189: 104032.
80 CONG W L, NING F D. A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel[J]. International Journal of Machine Tools and Manufacture2017121: 61-69.
81 ?RODOWSKI ?, CHOMA T, WILKOS I, et al. Influence of surface characteristics and finishing on fatigue properties of additively manufactured Ti6A14V[C]∥2021 6th International Conference on Nanotechnology for Instrumentation and Measurement. 2021: 1-4.
82 葛亚琼, 徐海军, 畅泽欣, 等. 一种多能场协同作用的梯度材料制备系统: 中国, CN116021034A[P]. 2023-04-28.
  GE Y Q, XU H J, CHANG Z X, et al. A multi-energy field synergistic gradient material preparation system: China, CN116021034A[P]. 2023-04-28 (in Chinese).
83 KIM B S, LEE N, THOTA S, et al. Effects of radiative local heating on metal solidification during selective laser melting for additive manufacturing[J]. Applied Surface Science2019496: 143594.
84 FAN W, TAN H, ZHANG F Y, et al. Overcoming the limitation of in-situ microstructural control in laser additive manufactured Ti-6Al-4V alloy to enhanced mechanical performance by integration of synchronous induction heating[J]. Journal of Materials Science and Technology202194: 32-46.
85 黄西娜, 曹煜博, 岳文, 等. 外加物理场对激光熔化沉积内部缺陷的控制[J]. 粉末冶金工业202333(1): 107-114.
  HUANG X N, CAO Y B, YUE W, et al. The control of internal defects during laser melting deposition by external physical field[J]. Powder Metallurgy Industry202333(1): 107-114 (in Chinese).
86 SHIM D S, BAEK GY, LEE E M. Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder[J]. Materials Science and Engineering A2017682: 550-562.
87 DALAEE M T, GLOOR L, LEINENBACH C, et al. Experimental and numerical study of the influence of induction heating process on build rates induction heating-assisted laser direct metal deposition (IH-DMD)[J]. Surface and Coatings Technology2020384: 125275.
88 廖文和, 刘婷婷, 张凯, 等. 一种用于陶瓷材料的选区激光熔融成形设备: 中国, CN104016686A[P]. 2015-11-11.
  LIAO W H, LIU T T, ZHANG K, et al. A selective laser melting forming equipment for ceramic materials: China, CN104016686A[P]. 2015-11-11 (in Chinese).
89 PARKER N, HEFFORD S, LEES J, et al. A novel VHF heating system to aid selective laser melting[C]∥2019 IEEE MTT-S International Microwave Symposium. 2019: 975-978.
90 张鹏, 朱强, 王敏, 等. 一种激光选区熔化放电复合工艺及设备: 中国, CN114260463A[P]. 2022-05-27.
  ZHANG P, ZHU Q, WANG M, et al. A laser selective melting discharge composite process and equipment: China, CN114260463A[P]. 2022-05-27 (in Chinese).
91 WU B, JI X Y, ZHOU J X, et al. In situ monitoring methods for selective laser melting additive manufacturing process based on images-a review[J]. China Foundry202118(4): 265-285.
92 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报202142(10): 524790.
  CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica202142(10): 524790 (in Chinese).
93 EVERTON S K, HIRSCH M, STRAVROULAKIS P, et al. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing[J]. Materials and Design201695: 431-445.
94 GRASSO M, COLOSIMO B M. Process defects and in situ monitoring methods in metal powder bed fusion: a review[J]. Measurement Science and Technology201728(4): 044005.
95 LIN Z Q, LAI Y W, PAN T T, et al. A new method for automatic detection of defects in selective laser melting based on machine vision[J]. Materials202114: 4175.
96 YANG D K, LI H, LIU S, et al. In situ capture of spatter signature of SLM process using maximum entropy double threshold image processing method based on genetic algorithm[J]. Optics and Laser Technology2020131: 106371.
97 MAZZOLENI L, DEMIR A G, CAPRIO L, et al. Real-time observation of melt pool in selective laser melting: Spatial, temporal, and wavelength resolution criteria[J]. IEEE Transactions on Instrumentation and Measurement202069(4): 1179-1190.
98 LUO S, MA X, XU J, et al. Deep learning based monitoring of spatter behavior by the acoustic signal in selective laser melting[J]. Sensors202121: 7179.
99 LI J C, ZHOU Q, HUANG X F, et al. In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting[J]. Journal of Intelligent Manufacturing202334: 853-867.
100 LI J C, CAO L C, XU J, et al. In situ porosity intelligent classification of selective laser melting based on coaxial monitoring and image processing[J]. Measurement2022187: 110232.
101 王迪, 王艺锰, 杨永强, 等. 一种激光选区熔化加工过程同轴监测方法及装置: 中国, CN106984813A[P]. 2019-08-20.
  WANG D, WANG Y M, YANG Y Q, et al. The invention relates to a coaxial monitoring method and device for laser selective melting process: China, CN106984813A[P]. 2019-08-20 (in Chinese).
102 STOLIDI A, TOURON A, TOULEMONDE L, et al. Towards in-situ fumes composition monitoring during an additive manufacturing process using energy dispersive X-ray fluorescence spectrometry[J]. Additive Manufacturing Letters20236: 100153.
103 FANG Q H, TAN Z B, LI H, et al. In-situ capture of melt pool signature in selective laser melting using U-Net-Based convolutional neural network[J]. Journal of Manufacturing Processes202168: 347-355.
104 XING W, CHU X, LYU T Y, et al. Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process[J]. Journal of Manufacturing Processes202274: 486-499.
105 LE T N, LO Y L, LIN Z H. Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy[J]. Additive Manufacturing202036: 101519.
106 PAVLOV M, DOUBENSKAIA M, SMUROV I. Pyrometric analysis of thermal processes in SLM technology[J]. Physics Procedia20105: 523-531.
107 ZHENG L P, ZHANG Q, CAO H Z, et al. Melt pool boundary extraction and its width prediction from infrared images in selective laser melting[J]. Materials and Design2019183: 108110.
108 BRUNA ROSSO C, CAPRIO L, MAZZOLENI L, et al. Influence of temporal laser emission profile on the selective laser melting (SLM) of thin structures[J]. Lasers in Engineering202047: 161-182.
109 HUSSAIN S Z, KAUSAR Z, KORESHI Z U, et al. Feedback control of melt pool area in selective laser melting additive manufacturing process[J]. Processes20219: 1547.
110 RENKEN V, FREYBERG A, SCHüNEMANN K, et al. In-process closed-loop control for stabilising the melt pool temperature in selective laser melting[J]. Progress in Additive Manufacturing20194(4): 411-421.
111 OSTER S, MAIERHOFER C, MOHR G, et al. Investigation of the thermal history of L-PBF metal parts by feature extraction from in-situ SWIR thermography[C]∥Proceedings of SPIE 11743, Thermosense: Thermal Infrared Applications XLIII. 2021: 117430C.
112 WANG X, LOUGH C S, BRISTOW D A, et al. A layer-to-layer control-oriented model for selective laser melting[C]∥2020 American Control Conference (ACC). 2020: 481-486.
113 SHEVCHIK S A, KENEL C, LENIENBACH C, et al. Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks[J]. Additive Manufacturing201821: 598-604.
114 席丽霞, 顾冬冬, 侯佳兴, 等. 一种基于在线超声监测的实时调控激光增材制造合金方法: 中国, CN116652208A[P]. 2023-08-29.
  XI L X, GU D D, HOU J X, et al. A real-time control laser additive alloy manufacturing method based on online ultrasonic monitoring is presented: China, CN116652208A[P]. 2023-08-29 (in Chinese).
115 ITO K, KUSANO M, DEMURA M, et al. Detection and location of microdefects during selective laser melting by wireless acoustic emission measurement[J]. Additive Manufacturing202140: 101915.
116 PLOTNIKOV Y, HENKEL D, BURDICK J, et al. Infrared-assisted acoustic emission process monitoring for additive manufacturing[J]. AIP Conference Proceedings20192102(1): 020006.
117 VAN Belle L, VANSTEENKISTE G, BOYER J C. Investigation of residual stresses induced during the selective laser melting process[J]. Key Engineering Materials2013554-557: 1828-1834.
118 LI Z R, LIANG W D, FAN Z J, et al. Advances in online detection technology for laser additive manufacturing: a review[J]. 3D Printing and Additive Manufacturing202310(3): 467-489.
119 BOSCHETTO A, BOTTINI L, VATANPARAST S. Powder bed monitoring via digital image analysis in additive manufacturing[J]. Journal of Intelligent Manufacturing202435: 991-1011.
120 BOSCHETTO A, BOTTINI L, VATANPARAST S, et al. Part defects identification in selective laser melting via digital image processing of powder bed anomalies[J]. Production Engineering202216: 691-704.
121 MCCANN R, OBEIDI M A, HUGHES C, et al. In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review[J]. Additive Manufacturing202145, 102058.
122 LU Q Y, NGUYEN N V, HUM A J W, et al. Identification and evaluation of defects in selective laser melted 316L stainless steel parts via in-situ monitoring and micro computed tomography[J]. Additive Manufacturing202035: 101287.
123 MODARESIALAM M, ROOZBAHANI H, ALIZADEH M, et al. In-situ monitoring and defect detection of selective laser melting process and impact of process parameters on the quality of fabricated SS 316L[J]. IEEE Access202210: 46100-46113.
124 YADAV P, RIGO O, ARVIEU C, et al. Data treatment of in situ monitoring systems in selective laser melting machines[J]. Advanced Engineering Materials202123: 2001327.
125 LIN X, LIU B, SHEN A C, et al. Collaborative control for in situ monitoring of molten pool in selective laser melting[J]. Frontiers in Mechanical Engineering20239: 1123751.
126 LU Y Q, WONG H C. Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring[J]. Virtual and Physical Prototyping201813(2): 39-48.
127 COECK S, BISHT M, PLAS J, et al. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data[J]. Additive Manufacturing201925: 347-356.
128 PANDIYAN V, DRISSI-DAOUDI R, SHEVCHIK S, et al. Semi-supervised monitoring of laser powder bed fusion process based on acoustic emissions[J]. Virtual and Physical Prototyping202116(4): 481-497.
129 ESCHNER N, WEISER L, H?FNER B, et al. Classification of specimen density in laser powder bed fusion (L-PBF) using in-process structure-borne acoustic process emissions[J]. Additive Manufacturing202034: 101324.
130 WANG H, LI B, XUAN F Z. Acoustic emission for in situ process monitoring of selective laser melting additive manufacturing based on machine learning and improved variational modal decomposition[J]. The International Journal of Advanced Manufacturing Technology2022122: 2277-2292.
131 LI J C, ZHOU Q, CAO L C, et al. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting[J]. Journal of Manufacturing Systems202264: 429-442.
132 LI J C, ZHANG X G, ZHOU Q, et al. A feature-level multi-sensor fusion approach for in-situ quality monitoring of selective laser melting[J]. Journal of Manufacturing Processes202284, 913-926.
133 LIN X, ZHU K P, FUH J Y H, et al. Metal-based additive manufacturing condition monitoring methods: from measurement to control[J]. ISA Transactions2022120: 147-166.
134 SAMPEDRO G A R, RACHMAWATI S M, KIM D S, et al. Exploring machine learning-based fault monitoring for polymer-based additive manufacturing: challenges and opportunities[J]. Sensors202222(23): 9446.
135 KLESZCZYNSKI S, JACOBSMüHLEN J ZUR, REINARZ B, et al. Improving process stability of laser beam melting systems[C]∥Fraunhofer Direct Digital Manufacturing Conference, 2014.
136 LI Y X, ZHAO W, LI Q S, et al. In-situ monitoring and diagnosing for fused filament fabrication process based on vibration sensors[J]. Sensors201919(11): 2589.
137 宋剑锋, 宋有年, 王文武, 等. 金属粉末选区激光熔化成形表面粗糙度预测及控制方法研究[J]. 中国激光202249(2): 0202008.
  SONG J F, SONG Y N, WANG W W, et al. Prediction and control on the surface roughness of metal powder using selective laser melting[J]. Chinese Journal of Lasers202249(2): 0202008 (in Chinese).
138 ZHANG B C, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering A2013584: 21-31.
139 苏金龙, 陈乐群, 谭超林, 等. 基于机器学习的增材制造过程优化与新材料研发进展[J]. 中国激光202249(14): 1402101.
  SU J L, CHEN L Q, TAN C L, et al. Progress in machine-learning-assisted process optimization and novel material development in additive manufacturing[J]. Chinese Journal of Lasers202249(14): 1402101 (in Chinese).
140 ROHANINEJAD M, TAVAKKOLI M R, VAHEDI N B, et al. A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines[J]. International Journal of Production Research202260(20): 6205-6225.
141 CHEN Y Y, WANG H Z, WU Y, et al. Predicting the printability in selective laser melting with a supervised machine learning method[J]. Materials202013(22): 5063.
142 张赛凡, 李博, 轩福贞. 激光选区熔化过程声发射信号的降噪与分类预测方法[J/OL]. 机械工程学报, (2022-04-21)[2023-08-22]. .
  ZHANG S F, LI B, XUAN F Z. Signal denoising and classification prediction method for on-line monitoring of acoustic emission during laser melting process[J/OL]. Journal of Mechanical Engineering, (2022-04-21)[2023-08-22]. (in Chinese).
143 CHANG T W, LIAO K W, LIN C C, et al. Predicting magnetic characteristics of additive manufactured soft magnetic composites by machine learning[J]. The International Journal of Advanced Manufacturing Technology2021114: 3177-3184.
144 LIAN Y P, GAN Z T, YU C, et al. A cellular automaton finite volume method for microstructure evolution during additive manufacturing[J]. Materials and Design2019169: 107672.
145 CHEN H Y, LIN C C, HORNG M H, et al. Deep learning applied to defect detection in powder spreading process of magnetic material additive manufacturing[J]. Materials202215: 5662.
146 WANG R X, CHEUNG C F, WANG C J, et al. Deep learning characterization of surface defects in the selective laser melting process[J]. Computers in Industry2022140: 103662.
147 TRIDELLO A, CIAMPAGLIA A, BERTO F, et al. Assessment of the critical defect in additive manufacturing components through machine learning algorithms[J]. Applied Sciences202313(7): 4294.
148 SONG Z R, WANG X M, GAO Y Y, et al. A hybrid deep generative network for pore morphology prediction in metal additive manufacturing[J]. Journal of Manufacturing Science and Engineering2023145(7): 071005.
149 KWON O, KIM G H, HAM J M, et al. A deep neural network for classification of melt-pool images in metal additive manufacturing[J]. Journal of Intelligent Manufacturing202031(2): 375-386.
150 LI B, ZHANG W, XUAN F Z. Machine-learning prediction of selective laser melting additively manufactured part density by feature-dimension-ascended Bayesian network model for process optimisation[J]. The International Journal of Advanced Manufacturing Technology2022121: 4023-4038.
151 MAITRA V, SHI J, LU C Y. Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach[J]. Journal of Manufacturing Processes202278: 183-201.
152 RAJU K L, THAPLIYAL S, SIGATAPU S, et al. Process parameter dependent machine learning model for densification prediction of selective laser melted Al-50Si alloy and its validation[J]. Journal of Materials Engineering and Performance202231(10): 8451-8458.
153 YANASE Y, MIYAUCHI H, MATSUMOTO H, et al. Densification behavior and microstructures of the Al-10%Si-0.35Mg alloy fabricated by selective laser melting: from experimental observation to machine learning: mechanics of materials[J]. Materials Transactions202263(2): 176-184.
154 RANKOUHI B, JAHANI S, PFEFFERKORN F E, et al. Compositional grading of a 316L-Cu multi-material part using machine learning for the determination of selective laser melting process parameters[J]. Additive Manufacturing202138: 101836.
155 LA Fé-PERDOMO I, RAMOS-GREZ J A, JERIA I, et al. Comparative analysis and experimental validation of statistical and machine learning-based regressors for modeling the surface roughness and mechanical properties of 316L stainless steel specimens produced by selective laser melting[J]. Journal of Manufacturing Processes202280: 666-682.
156 MAITRA V, SHI J. Evaluating the predictability of surface roughness of Ti-6Al-4V alloy from selective laser melting[J]. Advanced Engineering Materials202325: 2300075.
157 FOTOVVATI B, CHOU K. Build surface study of single-layer raster scanning in selective laser melting: surface roughness prediction using deep learning[J]. Manufacturing Letters202233: 701-711.
158 BARRIONUEVO G O, WALCZAK M, RAMOS-GREZ J, et al. Microhardness and wear resistance in materials manufactured by laser powder bed fusion: machine learning approach for property prediction[J]. CIRP Journal of Manufacturing Science and Technology202343: 106-114.
159 THEEDA S, JAGDALE H S, RAVICHANDER B B, et al. Optimization of process parameters in laser powder bed fusion of SS 316L parts using artificial neural networks[J]. Metals202313(5): 842.
160 YANG Z T, YANG M, SISSON R, et al. Machine learning model to predict tensile properties of annealed Ti6Al4V parts prepared by selective laser melting[J]. Artificial Intelligence for Engineering Design, Analysis and Manufacturing202236: E30.
161 KUSANO M, MIYAZAKI S, WATANABE M, et al. Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification[J]. Materials Science and Engineering A2020787: 139549.
162 MUHAMMAD W, BRAHME A P, IBRAGIMOVA O, et al. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys[J]. International Journal of Plasticity2021136: 102867.
163 CENTOLA A, CIAMPAGLIA A, TRIDELLO A, et al. Machine learning methods to predict the fatigue life of selectively laser melted Ti6Al4V components[J]. Fatigue and Fracture of Engineering Materials and Structures202346(11): 4350-4370.
164 HOR?AS J, BěHAL J, HOMOLA P, et al. Modelling fatigue life prediction of additively manufactured Ti-6Al-4V samples using machine learning approach[J]. International Journal of Fatigue2023169: 107483.
165 LI J, YANG Z M, QIAN G A, et al. Machine learning based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy fabricated by selective laser melting[J]. International Journal of Fatigue2022158: 106764.
166 SHI T, SUN J Y, LI J H, et al. Machine learning based very-high-cycle fatigue life prediction of AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Fatigue2023171: 107585.
167 武建国, 安红萍. 缩松致密化过程中的屈服轨迹[J]. 铸造202069(12): 1272-1276.
  WU J G, AN H P. Yield locus of dispersed shrinkage during densifying process[J]. Foundry202069(12): 1272-1276 (in Chinese).
168 CHEN D J, WANG P, PAN R, et al. Characteristics of metal specimens formed by selective laser melting: a state-of-the-art review[J]. Journal of Materials Engineering and Performance202030(10): 7073-7100.
169 张纪奎, 孔祥艺, 马少俊, 等. 激光增材制造高强高韧TC11钛合金力学性能及航空主承力结构应用分析[J]. 航空学报202142(10): 525430.
  ZHANG J K, KONG X Y, MA S J, et al. Laser additive manufactured high strength-toughness TC11 titanium alloy: Mechanical properties and application in airframe load-bearing structure[J]. Acta Aeronautica et Astronautica Sinica202142(10): 525430 (in Chinese).
170 肖贵坚, 刘帅, 贺毅, 等. 钛合金激光砂带加工的离焦控制与表面形貌[J]. 航空学报202243(4): 525603.
  XIAO G J, LIU S, HE Y, et al. Defocus control and surface topography of titanium alloy laser belt processing[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525603 (in Chinese).
171 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报202243(4): 525587.
  PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica202243(4): 525587 (in Chinese).
172 NAGARAJAN B, HU Z H, SONG X, et al. Development of micro selective laser melting: the state of the art and future perspectives[J]. Engineering20195(4): 702-720.
173 SUN J F, YANG Y Q, WANG D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Optics and Laser Technology201349: 118-124.
174 DO D K, LI P F. The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting[J]. Virtual and Physical Prototyping201611(1): 41-47.
175 XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia201585: 74-84.
176 ETTEFAGH A H, ZENG C Y, GUO S M, et al. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing[J]. Additive Manufacturing201928: 252-258.
177 ZAFARI A, XIA K. Superior titanium from hybridised microstructures - a new strategy for future alloys[J]. Scripta Materialia2019173: 61-65.
178 彭斌意, 刘洋, 郑晓董, 等. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程202250(6): 36-48.
  PENG B Y, LIU Y, ZHENG X D, et al. Compression resistance of particle reinforced titanium matrix composites prepared by selective laser melting[J]. Journal of Materials Engineering202250(6): 36-48 (in Chinese).
179 LI N, LIU W, WANG Y, et al. Laser additive manufacturing on metal matrix composites: a review[J]. Chinese Journal of Mechanical Engineering202134(3): 208-223.
180 HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: an overview[J]. Composites Part A: Applied Science and Manufacturing2019121: 418-438.
181 JIANG Q H, LI S, GUO S, et al. Comparative study on process-structure-property relationships of TiC/Ti6Al4V and Ti6Al4V by selective laser melting[J]. International Journal of Mechanical Sciences2023241: 107963.
182 ZHOU Z G, LIU Y Z, LIU X H, et al. Microstructure evolution and mechanical properties of in-situ Ti6Al4V-TiB composites manufactured by selective laser melting[J]. Composites Part B: Engineering2021207: 108567.
183 SHISHKOVSKY I, KAKOVKINA N, SHERBAKOV V. Graded layered titanium composite structures with TiB2 inclusions fabricated by selective laser melting[J]. Composite Structures2017169: 90-96.
184 朱磊, 吴文杰, 范树迁, 等. 气-液反应激光原位增材制造TiN增强钛基复合材料组织结构及力学性能研究[J]. 稀有金属材料与工程202251(6): 2151-2160.
  ZHU L, WU W J, FAN S Q, et al. Microstructure and mechanical properties of in-situ laser additive manufacturing of TiN reinforced Ti6Al4V matrix composites based on gas-liquid reaction[J]. Rare Metal Materials and Engineering202251(6): 2151-2160 (in Chinese).
185 ZHANG J L, SONG B, CAI C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4V composite by heat treatment[J]. Advanced Powder Materials20221(2): 100010.
186 TAUB A, MOOR E D, LUO A, et al. Materials for automotive lightweighting[J]. Annual Review of Materials Research201949(1): 327-359.
187 ZHAO X, DONG S Y, YAN S X, et al. The effect of different scanning strategies on microstructural evolution to 24CrNiMo alloy steel during direct laser deposition[J]. Materials Science and Engineering A2020771: 138557.
188 CUI X, ZHANG S, WANG Z Y, et al. Microstructure and fatigue behavior of 24CrNiMo low alloy steel prepared by selective laser melting[J]. Materials Science and Engineering A2022845: 143215.
189 WANG F Z, ZHANG C H, CUI X, et al. Effect of energy density on the defects, microstructure, and mechanical properties of selective-laser-melted 24CrNiMo low-alloy steel[J]. Journal of Materials Engineering and Performance202231(5): 3520-3534.
190 CHEN Y, RONG P, MEN X N, et al. An experimental investigation into residual stress control of 24CrNiMo alloy steel by selective laser melting[J]. Coatings202313(2): 321.
191 MA Y X, GAO Y F, ZHAO L, et al. Optimization of process parameters and analysis of microstructure and properties of 18Ni300 by selective laser melting[J]. Materials202215(14): 4757.
192 HABASSI F, HOURIA M, BARKA N, et al. Influence of post-treatment on microstructure and mechanical properties of additively manufactured C300 maraging steel[J]. Materials Characterization2023202: 112980.
193 OSTROVSKI I F, RABELO A, BODZIAK S, et al. Effect of the plasma nitriding on the mechanical properties of the 18Ni300 steel obtained by selective laser melting[J]. Surface and Coatings Technology2023466: 129688.
194 FANG Y J, KIM M K, ZHANG Y L, et al. Particulate-reinforced iron-based metal matrix composites fabricated by selective laser melting: a systematic review[J]. Journal of Manufacturing Processes202274: 592-639.
195 ZHAO X, WEI Q S, GAO N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing[J]. Journal of Materials Processing Technology2019270: 8-19.
196 TRAN D, LIN C K, TUNG P C, et al. Enhancing mechanical and corrosion properties of AISI 420 with titanium-nitride reinforcement through high-power-density selective laser melting using two-stage mixed TiN/AISI 420 powder[J]. Materials202316(11): 4198.
197 OZSOY A, AYDOGAN E, DERICIOGLU A F. Selective laser melting of Nano-TiN reinforced 17-4?PH stainless steel: densification, microstructure and mechanical properties[J]. Materials Science and Engineering A2022836: 142574.
198 KANG N, MA W Y, LI F H, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite[J]. Vacuum2018154: 69-74.
199 ZHANG M H, ZHANG B C, WEN Y J, et al. Research progress on selective laser melting processing for nickel-based superalloy[J]. International Journal of Minerals Metallurgy and Materials202229(3): 369-388.
200 SUI S, LI H S, LI Z, et al. Introduction of a new method for regulating laves phases in inconel 718 superalloy during a laser-repairing process[J]. Engineering202216(9): 239-246.
201 PANWISAWAS C, TANG Y B, REED R C. Metal 3D printing as a disruptive technology for superalloys[J]. Nature Communications202011(1): 2327.
202 MOSTAFAEI A, GHIAASIAAN R, HO I T, et al. Additive manufacturing of nickel-based superalloys: a state-of-the-art review on process-structure-defect-property relationship[J]. Progress in Materials Science2023136: 101108.
203 XU J, WU Z C, NIU J P, et al. Effect of laser energy density on the microstructure and microhardness of inconel 718 alloy fabricated by selective laser melting[J]. Crystals202212(9): 1243.
204 BAI P K, HUO P C, WANG J, et al. Microstructural evolution and mechanical properties of Inconel 718 alloy manufactured by selective laser melting after solution and double aging treatments[J]. Journal of Alloys and Compounds2022911: 164988.
205 GAIN A K, LI Z, ZHANG L C. Wear mechanism, subsurface structure and nanomechanical properties of additive manufactured Inconel nickel (IN718) alloy[J]. Wear2023523: 204863.
206 何磊, 汪超, 邓甜甜. 后处理工艺对激光选区熔化Hastelloy-X合金微观组织及力学性能的影响[J]. 动力工程学报202343(5): 511-518.
  HE L, WANG C, DENG T T. Effect of post treatment process on microstructure and mechanical behaviour of Hastelloy-X alloy produced by selective laser melting[J]. Journal of Chinese Society of Power Engineering202343(5): 511-518 (in Chinese).
207 李雅莉, 雷力明, 侯慧鹏, 等. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程201947(5): 100-106.
  LI Y L, LEI L M, HOU H P, et al. Effect of heat processing on microstructures and tensile properties of selective laser melting Hastelloy X alloy[J]. Journal of Materials Engineering201947(5): 100-106 (in Chinese).
208 MONTERO-SISTIAGA M L, POURBABAK S, HUMBEECK J V, et al. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting)[J]. Materials and Design2019165: 107598.
209 YUAN Z W, CHANG F C, CHEN A, et al. Microstructure and properties of SLM-Hastelloy X alloy after different hot isostatic pressing + heat treatment[J]. Materials Science and Engineering A2022852: 143714.
210 WANG Z Q, GAO S, LI S J, et al. Research progress of laser additive manufacturing nickel-based alloy metal matrix composites[J]. Metals202313(1): 129.
211 SHUAI C J, WANG B, BIN S Z, et al. TiO2-induced in situ reaction in graphene oxide-reinforced AZ61 biocomposites to enhance the interfacial bonding[J]. ACS Applied Materials and Interfaces202012(20): 23464-23473.
212 LIU S Y, ZHANG W, PENG Y B, et al. Microstructure evolution and mechanical properties of in-situ multi-component carbides reinforced FeCoNi alloy[J]. Journal of Alloys and Compounds2021886: 161215.
213 CHEN W G, YANG T, DONG L L, et al. Advances in graphene reinforced metal matrix nanocomposites: mechanisms, processing, modelling, properties and applications[J]. Nanotechnology and Precision Engineering20203(4): 189-210.
214 ZHANG B C, BI G J, NAI S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting[J]. Optics and Laser Technology201680: 186-195.
215 CHENG X P, ZHAO Y N, QIAN Z, et al. Crack elimination and mechanical properties enhancement in additive manufactured Hastelloy X via in-situ chemical doping of Y2O3 [J]. Materials Science and Engineering A2021824: 141867.
216 GAO Y K, CHEN H S, ZHOU J, et al. Microstructures and wear behaviors of WC particle reinforced nickel-based composites fabricated by selective laser melting[J]. Journal of Manufacturing Processes202395: 291-301.
217 WANG P, ZHANG B C, TAN C C, et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting[J]. Materials and Design2016112: 290-299.
Outlines

/