Fluid Mechanics and Flight Mechanics

Rapid prediction model for tail infrared radiation characteristics of serpentine nozzles

  • Jie SHI ,
  • Li ZHOU ,
  • Jingwei SHI ,
  • Zhanxue WANG
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an  710129,China
    2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing  100191,China
E-mail: zhouli@nwpu.edu.cn

Received date: 2023-09-22

  Revised date: 2023-09-28

  Accepted date: 2023-10-07

  Online published: 2023-10-24

Supported by

National Natural Science Foundation of China(52076180);Funds of Distinguished Young Scholars of Shaanxi Province(2021JC-10);National Science and Technology Major Project (J2019-Ⅱ-0015-0036);Science Center for Gas Turbine Project (P2022-B-Ⅰ-002-001, P2022-B-Ⅱ-010-001);the Fundamental Research Funds for the Central Universities(501XTCX2023146001)

Abstract

To efficiently calculate the infrared radiation characteristics of serpentine nozzles with varying shielding properties during the early stages of infrared stealth design for exhaust systems, a rapid prediction model for the tail infrared radiation characteristics of serpentine nozzles has been developed. This model combines the image-based method and the one-dimensional flow field model. The former transforms the geometric shielding relationship of serpentine nozzles into pixel operations on multi-layer two-dimensional images, and the latter is established based on the compressible pipe flow and jet theory. The gas absorption and emission characteristics are calculated using the statistical narrow-band model. The impact of shielding properties on gas radiation is also considered by fitting functions for the length and volume of the gas-visible region. The computational efficiency and accuracy of the model are verified by comparison with the discrete transfer method. The results show that the rapid prediction model can shorten the computation time of the tail infrared radiation from several hours to about 1 s, and the outcomes of the model align well with the discrete transfer method in terms of trend and value. The maximum relative error in total infrared radiation intensity for different shielding properties of serpentine nozzles and various nozzle working conditions is only 6.5%. Furthermore, the maximum relative errors for wall radiation and gas radiation are 4.1% and 5.2%, respectively. The model also demonstrates good generalizability for axisymmetric and two-dimensional nozzles.

Cite this article

Jie SHI , Li ZHOU , Jingwei SHI , Zhanxue WANG . Rapid prediction model for tail infrared radiation characteristics of serpentine nozzles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(14) : 129639 -129639 . DOI: 10.7527/S1000-6893.2023.29639

References

1 高翔, 杨青真, 施永强, 等. 出口形式对双S弯排气系统红外特性影响研究[J]. 红外与激光工程201544(6): 1726-1732.
  GAO X, YANG Q Z, SHI Y Q, et al. Numerical simulation of radiation intensity of double S-shaped exhaust system with different outlet shapes[J]. Infrared and Laser Engineering201544(6): 1726-1732 (in Chinese).
2 邓洪伟, 尚守堂, 金海, 等. 航空发动机隐身技术分析与论述[J]. 航空科学技术201728(10): 1-7.
  DENG H W, SHANG S T, JIN H, et al. Analysis and discussion on stealth technology of aero engine[J]. Aeronautical Science & Technology201728(10): 1-7 (in Chinese).
3 JOHANSSON M. Propulsion integration in an UAV[C]∥24th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2006.
4 JOHANSSON M, DALENBRING M. Calculation of IR signatures from airborne vehicles[C]∥Proceedings Volume 6228, Modeling and Simulation for Military Applications. Bellingham: SPIE, 2006: 971-982.
5 RAO N A, BOOMADEV, SHUBHAM, et al. IR signature studies of serpentine nozzle with elliptic exit[C]∥International Conference on Theoretical Applied Computational and Experimental Mechanics. Kharagpur: Indian Institute of Technology, 2017.
6 RAO N A, ARORA R, KUSHARI A. High subsonic flow field from the serpentine nozzle[C]∥8th International Conference on Fluid Flow, Heat and Mass Transfer, 2021.
7 AN S Y, KIM W C, OH S H. A study on the effect of engine nozzle configuration on the plume IR signature[J]. Journal of the Korean Society for Aeronautical & Space Sciences201240(8): 688-694.
8 LEE Y R, LEE J W, SHIN C M, et al. Characteristics of flow field and IR of double serpentine nozzle plume for varying cross sectional areas and flight conditions in UCAV[J]. Journal of the Korean Society for Aeronautical & Space Sciences202149(8): 689-698.
9 桑学仪, 吉洪湖, 王丁. 长径比和偏径比对双S形二元喷管性能的影响[J]. 红外技术201941(5): 443-449.
  SANG X Y, JI H H, WANG D. Influence of length-diameter ratio and offset-diameter ratio on performance of serpentine 2-D nozzle[J]. Infrared Technology201941(5): 443-449 (in Chinese).
10 王宇恒, 吉洪湖, 程稳, 等. 收扩喷管设计对双S形二元排气系统气动与红外特征的影响[J]. 红外与激光工程202150(11): 20210084.
  WANG Y H, JI H H, CHENG W, et al. Influence of design of convergent-divergent nozzle on aerodynamic and infrared characteristics of serpentine 2-D exhaust system[J]. Infrared and Laser Engineering202150(11): 20210084 (in Chinese).
11 CHENG W, WANG Z, ZHOU L, et al. Influences of shield ratio on the infrared signature of serpentine nozzle[J]. Aerospace Science and Technology201771(12): 299-311.
12 程稳, 周莉, 王占学, 等. 几何参数对S弯喷管红外辐射特性的影响[J]. 推进技术201839(9): 1974-1985.
  CHENG W, ZHOU L, WANG Z X, et al. Effects of geometric parameters on infrared signature of serpentine nozzle[J]. Journal of Propulsion Technology201839(9): 1974-1985 (in Chinese).
13 CHENG W, WANG Z X, ZHOU L, et al. Investigation of infrared signature of serpentine nozzle for turbofan[J]. Journal of Thermophysics and Heat Transfer201833(1): 170-178.
14 丁娟, 杨青真, 李翔, 等. 不同出口型式S型喷管红外辐射特性研究[J]. 科学技术与工程201414(7): 273-276.
  DING J, YANG Q Z, LI X, et al. Research on the infrared radiation characteristic of S-shaped nozzles with different outlet[J]. Science Technology and Engineering201414(7): 273-276 (in Chinese).
15 GAO X, YANG Q Z, ZHOU H, et al. Numerical simulation on the infrared radiation characteristics of S-shaped nozzles[J]. Applied Mechanics and Materials2013482(12): 282-286.
16 黄章斌, 管留, 李晓霞, 等. 喷管类型对飞行器排气系统辐射特性的影响[J]. 红外技术202143(6): 587-591.
  HUANG Z B, GUAN L, LI X X, et al. Numerical simulation of radiation characteristics of aircraft exhaust systems with different nozzles[J]. Infrared Technology202143(6): 587-591 (in Chinese).
17 MAHULIKAR S P, POTNURU S K, KOLHE P S. Analytical estimation of solid angle subtended by complex well-resolved surfaces for infrared detection studies[J]. Appl. Opt.200746(22): 4991-4998.
18 CHEN H Y, ZHANG H B, XI Z H, et al. Modeling of the turbofan with an ejector nozzle based on infrared prediction[J]. Applied Thermal Engineering2019159: 113910.
19 柳亚冰, 徐植桂, 叶东鑫, 等. 涡扇发动机最小红外特征模式性能寻优控制研究[J]. 推进技术202041(5): 1168-1177.
  LIU Y B, XU Z G, YE D X, et al. A study on performance seeking control of minimum infrared characteristic mode for turbofan engine[J]. Journal of Propulsion Technology202041(5): 1168-1177 (in Chinese).
20 孙啸林, 王占学, 周莉, 等. 基于多参数耦合的S弯隐身喷管设计方法研究[J]. 工程热物理学报201536(11): 2371-2375.
  SUN X L, WANG Z X, ZHOU L, et al. The design method of serpentine stealth nozzle based on coupled parameters[J]. Journal of Engineering Thermophysics201536(11): 2371-2375 (in Chinese).
21 程稳. S弯喷管红外辐射特性预测及优化设计方法[D]. 西安: 西北工业大学, 2019: 89-95.
  CHENG W. Infrared signature prediction and optimization design method for serpentine nozzle[D]. Xi’an: Northwestern Polytechnical University, 2019: 89-95 (in Chinese).
22 程稳, 孙啸林, 马姗. 基于假设气体法的燃气辐射特性计算模型[J]. 红外与激光工程202251(7): 20220286.
  CHENG W, SUN X L, MA S. Fictitious gas-based model for calculating radiation characteristics of gas[J]. Infrared and Laser Engineering202251(7): 20220286 (in Chinese).
23 TASHKUN S A, PEREVALOV V I.CDSD-4000: High-resolution, high-temperature carbon dioxide spectroscopic databank[J].Journal of Quantitative Spectroscopy and Radiative Transfer2011112(9):1403-1410.
24 ROTHMAN L S, GORDON I E, BARBER R J, et al. HITEMP, the high-temperature molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy & Radiative Transfer2010111(15): 2139-2150.
25 王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社, 2006: 182-187.
  WANG X Y. Fundamentals of gas dynamics[M]. Xi’an: Northwestern Polytechnical University Press, 2006: 182-187 (in Chinese).
26 王丰, 吉洪湖, 于明飞. 涡扇发动机收敛排气系统进口总温总压对喷流中心线温度分布影响[J]. 航空动力学报201631(4): 816-822.
  WANG F, JI H H, YU M F. Influence of total temperature and pressure at the inlet of convergent exhaust system of turbofan engine on temperature distribution at plume centerline[J]. Journal of Aerospace Power201631(4): 816-822 (in Chinese).
27 孟凡斌, 郑丽. 基于LOWTRAN 7的红外大气透过率计算方法[J]. 光电技术应用200924(3): 29-32, 66.
  MENG F B, ZHENG L. LOWTRAN 7-based calculation method of IR transmittance in the atmosphere[J]. Electro-Optic Technology Application200924(3): 29-32, 66 (in Chinese).
Outlines

/