Reviews

Comprehensive evaluation techniques and methods for flight test of avionics fire control system

  • Hailang SONG ,
  • Jiandong ZHANG ,
  • Guoqing SHI ,
  • Qiming YANG ,
  • Yaozhong ZHANG
Expand
  • 1.Chinese Flight Test Establishment,Xi’an  710089,China
    2.School of Electronics and Information,Northwestern Polytechnical University,Xi’an  710072,China

Received date: 2023-10-08

  Revised date: 2023-10-10

  Accepted date: 2023-10-15

  Online published: 2023-10-13

Supported by

Natural Science Basic Research Program of Shaanxi(2022JQ-593);Key Research and Development Program of Shaanxi(2022GY-089)

Abstract

This paper discusses the technical issues of fire control modeling, data fusion, information management, effectiveness evaluation, and precision analysis in the comprehensive evaluation of flight test results of integrated avionics fire control systems. The theoretical bases, key technologies, and flight test applications of these technologies are discussed, providing necessary information, ideas, and methods for further in-depth research and application. The technologies described in this paper are an important part of the preparation for the flight test of the integrated avionics fire control system of aircraft, and can provide practical technical means for the comprehensive analysis of flight test results.

Cite this article

Hailang SONG , Jiandong ZHANG , Guoqing SHI , Qiming YANG , Yaozhong ZHANG . Comprehensive evaluation techniques and methods for flight test of avionics fire control system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(5) : 529687 -529687 . DOI: 10.7527/S1000-6893.2023.29687

References

1 常显奇, 程永生. 常规武器装备试验学[M]. 北京: 国防工业出版社, 2007.
  CHANG X Q, CHENG Y S. Experimental science of conventional weapons and equipment[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
2 周自全. 现代战斗机的飞行试验[J]. 北京航空航天大学学报200329(12): 1110-1114.
  ZHOU Z Q. Flight test of modern fighter[J]. Journal of Beijing University of Aeronautics and Astronautics200329(12): 1110-1114 (in Chinese).
3 空军装备部编写组. 美国空军试验鉴定程序(上)(中)(下)[M]. 北京: 航空工业出版社, 2014.
  Air Force Armament Department Writing Group. U.S. air force test qualification program Vol1 Vol2 Vol3[M]. Beijing: Aviation Industry Press, 2014 (in Chinese).
4 王鹏. 对新一代综合航电系统发展的探讨[J]. 中国设备工程2019(3): 209-210.
  WANG P. Discussion on the development of new generation integrated avionics system[J]. China Plant Engineering2019(3): 209-210 (in Chinese).
5 宋振国,装备试验鉴定概论[M]. 北京: 国防工业出版社,2020: 4.
  SONG Z G. Introduction to equipment test and appraisal[M]. Beijing: National Defense Industry Press, 2020: 4 (in Chinese).
6 武小悦. 装备性能试验[M]. 北京: 国防工业出版社, 2022.
  WU X Y. Equipment performance test[M]. Beijing: National Defense Industry Press, 2022 (in Chinese).
7 王凯. 武器装备作战试验[M]. 北京: 国防工业出版社, 2012.
  WANG K. Weapon equipment combat test[M]. Beijing: National Defense Industry Press, 2012 (in Chinese).
8 李向阳. 武器试验机建设关键技术研究[J]. 飞行力学201634(3): 13-16, 20.
  LI X Y. Research on key technology of weapon test aircraft[J]. Flight Dynamics201634(3): 13-16, 20 (in Chinese).
9 张洪江. 装备在役考核[M]. 北京: 国防工业出版社,2020: 4
  ZHANG H J. Equipment in-service assessment[M]. Beijing: National Defense Industry Press, 2020: 4 (in Chinese).
10 陈敬志. 基于均匀设计的空地导弹火控精度试验技术研究[J]. 弹箭与制导学报201939(5): 77-80.
  CHEN J Z. Accuracy test technologies for air-to-ground missile fire control system based on uniform design method[J]. Journal of Projectiles, Rockets, Missiles and Guidance201939(5): 77-80 (in Chinese).
11 JANA S, SHIVKUMAR S, SHEWALE M, et al. Autonomous flight test of a novel nonconventional biplane micro air vehicle[J]. Journal of Aerospace Engineering202235(5): 1-15.
12 中国飞行试验研究院. F-35“闪电”Ⅱ战斗机飞行试验全记录[M]. 北京: 航空工业出版社, 2019.
  Chinese Flight Test Establishment. Full record of flight test of F-35 lightning Ⅱ fighter[M]. Beijing: Aviation Industry Press, 2019 (in Chinese).
13 曹景涛, 李文龙. 歼击机强度包线边界状态点试飞验证[J]. 科学技术与工程201919(6): 263-269.
  CAO J T, LI W L. Flight test verification of the fighter’s strength envelope boundary state point[J]. Science Technology and Engineering201919(6): 263-269 (in Chinese).
14 高郭池, 全敬泽, 李保良, 等. Y12F飞机局方审定飞行试验研究[J]. 飞行力学202038(1): 84-89.
  GAO G C, QUAN J Z, LI B L, et al. Research on the administration certification flight test of the Y12F aircraft[J]. Flight Dynamics202038(1): 84-89 (in Chinese).
15 张启鹏, 刘超强, 刘庆灵. 他机验证试飞技术的发展[J]. 大飞机2021(4): 16-21.
  ZHANG Q P, LIU C Q, LIU Q L. Development of verification flight test technology for other aircraft[J]. Jetliner2021(4): 16-21 (in Chinese).
16 罗松. 民机试飞符合性验证研究[C]∥第十届中国航空学会青年科技论坛, 2022: 255-260.
  LUO S. Civil airplane flight test compliance verification studies[C]∥ Proceedings of the 10th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics, 2022: 255-260 (in Chinese).
17 赵霞. 航空武器装备试验与仿真[M]. 北京: 航空工业出版社, 2019.
  ZHAO X. Test and simulation of aviation weapons and equipment[M]. Beijing: Aviation Industry Press, 2019 (in Chinese).
18 李靖. 基于作战使用的军机航电/武器系统飞行试验设计[J]. 弹箭与制导学报201838(2): 143-146.
  LI J. Design of the flight test for military avionics/weapon systems based on operational use[J]. Journal of Projectiles, Rockets, Missiles and Guidance201838(2): 143-146 (in Chinese).
19 刘映国, 王凯, 王峰. 外军装备试验鉴定[M]. 北京: 国防工业出版社, 2022.
  LIU Y G, WANG K, WANG F. Test and appraisal of foreign military equipment[M]. Beijing: National Defense Industry Press, 2022 (in Chinese).
20 王建军, 李杨. 试飞测试系统地面实验验证技术初探[C]∥2011航空试验测试技术学术交流会, 2010: 167-171.
  FAN X M, WANG J J, LI Y. Study of ground experimental verification for flight test measuring system[C]∥ 2011 Aviation Test and Testing Technology Academic Exchange Conference, 2010:167-171 (in Chinese).
21 郑杰. 试验设计与数据分析: 基于R语言应用[M]. 广州: 华南理工大学出版社, 2016.
  ZHENG J. Experimental design and data analysis: Based on R language application[M]. Guangzhou: South China University of Technology Press, 2016 (in Chinese).
22 袁大天, 于芳芳, 李太平. 直升机航电系统高寒山地环境飞行试验[J]. 航空科学技术201829(10): 32-37.
  YUAN D T, YU F F, LI T P. Research on flight test of helicopter avionics system in alpine and mountainous regions[J]. Aeronautical Science & Technology201829(10): 32-37 (in Chinese).
23 宋海靖, 郭毓文. 歼击机座舱人机界面良好性综合评价方法及应用研究[J]. 航空科学技术201728(5): 28-32.
  SONG H J, GUO Y W. Study on methods and application of human-computer interface ergonomics evaluation for fighter cockpit[J]. Aeronautical Science & Technology201728(5): 28-32 (in Chinese).
24 郭锦炎, 竺伊文, 王华吉, 等. 某多级杆式空气发射系统内弹道仿真与试验研究[J]. 弹道学报202234(1): 72-76.
  GUO J Y, ZHU Y W, WANG H J, et al. Simulation and experimental study on the interior ballistics of multistage pistion cylinder air launching equipment[J]. Journal of Ballistics202234(1): 72-76 (in Chinese).
25 方慧波, 王金彪. 民用飞机发动机灭火系统地面试验技术研究[J]. 民用飞机设计与研究2020(2): 26-29.
  FANG H B, WANG J B. Ground test technology of nacelle fire protection system for civil airplane[J]. Civil Aircraft Design & Research2020(2): 26-29 (in Chinese).
26 曹栓劳, 张安, 体卫群. 战斗机综合航电/火控系统的多机协同试飞[J]. 火力与指挥控制200732(3): 111-113.
  CAO S L, ZHANG A, TI W Q. Multi-flighter coordinated flight test of new integrated fire control system[J]. Fire Control and Command Control200732(3): 111-113 (in Chinese).
27 王超, 黄兵旺, 贾伟力. 某型无人直升机前飞段仿真建模与试飞验证[J]. 飞行力学202038(2): 71-76.
  WANG C, HUANG B W, JIA W L. Simulation modeling in forward flight of an unmanned helicopter and flight test verification[J]. Flight Dynamics202038(2): 71-76 (in Chinese).
28 宋羽, 邹汝平, 王军. 基于模型的系统工程在导弹系统研制中的实践[J]. 兵工学报202243(S1): 97-106.
  SONG Y, ZOU R P, WANG J. On the practice of model-based system engineering in missile development[J]. Acta Armamentarii202243(S1): 97-106 (in Chinese).
29 吴福平, 崔小航, 邓皓, 等. 基于变角度积分的六自由度弹道快速解算方法[J]. 航空科学技术201627(9): 49-51.
  WU F P, CUI X H, DENG H, et al. Quick solving algorithm of 6-DOF trajectory based on variable step angel integration[J]. Aeronautical Science & Technology201627(9): 49-51 (in Chinese).
30 黄义, 汪德虎, 余家祥, 等. 舰炮一维弹道修正弹射击误差分离和校正研究[J]. 指挥控制与仿真201234(3): 44-46.
  HUANG Y, WANG D H, YU J X, et al. Research on separating and correcting firing errors of one dimension trajectory correction projectile fired by shipborne Gun[J]. Command Control & Simulation201234(3): 44-46 (in Chinese).
31 张宏林, 程卫真, 夏品奇. 基于分布式FBG传感测量的旋翼动载荷工程建模与试飞验证[J/OL].应用力学学报:1-14[2023-08-15].
  ZHANG H L, CHEN W Z, XIA P Q. Engineering modeling and flight testing of the dynamic loads on rotor structure based on distributed fiber Bragg grating sensing measurement[J/OL]. Chinese Journal of Applied Mechanics: 1-14[2023-08-15] (in Chinese).
32 杨瑞赓, 孙凤琴, 田银桥. 通用飞机验证试飞智能辅助测试系统需求研究[J]. 测控技术202039(12): 126-130, 140.
  YANG R G, SUN F Q, TIAN Y Q. Intelligent auxiliary test system requirements of general aircraft verification flight[J]. Measurement & Control Technology202039(12): 126-130, 140 (in Chinese).
33 杨犇, 金飞腾, 刘燕斌, 等. 基于高速飞行器火力控制模型的智能解算方法[J/OL]. 北京航空航天大学学报: 1-14[2023-09-19].
  YANG B, JIN F T, LIU Y B, et al. Intelligent solution method based on high-speed aircraft fire control model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-14[2023-09-19] (in Chinese).
34 范海洲, 黄楷, 魏兵卓, 等. 一体化火力控制与指挥控制关键技术研究[J]. 数字技术与应用202038(2): 159-162, 164.
  FAN H Z, HUANG K, WEI B Z, et al. Research on critical technique in incorporated fire control and command control[J]. Digital Technology & Application202038(2): 159-162, 164 (in Chinese).
35 葛银茂, 韩兆福, 陈遵银, 等. 多传感器航迹数据融合的机载火控系统[J]. 中国测试技术200632(4): 59-60, 112.
  GE Y M, HAN Z F, CHEN Z Y, et al. Research on flight-path data amalgamation of multi-sensor aerial fire-control system[J]. China Meas Urement200632(4): 59-60, 112 (in Chinese).
36 梁葆华, 侯玉宏. 机载多传感器信息融合试飞技术研究[J]. 航空计算技术201444(2): 128-130, 134.
  LIANG B H, HOU Y H. Study on flight test technology of airborne multi-sensor data fusion[J]. Aeronautical Computing Technique201444(2): 128-130, 134 (in Chinese).
37 张玲, 陈路路, 梁进科, 等. 一种基于支持向量机的雷达多目标分类方法[J]. 无线电工程202050(1): 53-56.
  ZHANG L, CHEN L L, LIANG J K, et al. A radar multi-target classification method based on support vector machine[J]. Radio Engineering202050(1): 53-56 (in Chinese).
38 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报20187(5): 531-547.
  ZHANG Q, HU J, LUO Y, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars20187(5): 531-547 (in Chinese).
39 宋蕾. 优化贝叶斯的数据融合算法[J]. 电子技术与软件工程2019(6): 157.
  SONG L. Optimized Bayesian data fusion algorithm[J]. Electronic Technology & Software Engineering2019(6): 157 (in Chinese).
40 董刚刚. 基于单演信号的SAR图像目标识别技术研究[D]. 长沙: 国防科学技术大学, 2016.
  DONG G G. Study on target recognition in SAR image via the monogenic signal[D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
41 施晓东, 杨世坤. 多传感器信息融合研究综述[J]. 通信与信息技术2022(6): 34-41.
  SHI X D, YANG S K. A review of research on multi-sensor information fusion[J]. Communication & Information Technology2022(6): 34-41 (in Chinese).
42 翟文军, 祝梁生. 机载多传感器数据融合技术[J]. 火力与指挥控制199520(1): 45-50.
  ZHAI W J, ZU L S. Airborne multisensor data fusion techiques[J]. Fire Control & Command Control199520(1): 45-50 (in Chinese).
43 GAO W D, ZHAO Z W. Gait phase recognition using fuzzy logic regulation with multisensor data fusion[J]. Journal of Sensors20212021: 1-13.
44 KASHINATH S A, MOSTAFA S A, LIM D, et al. A general framework of multiple coordinative data fusion modules for real-time and heterogeneous data sources[J]. Journal of Intelligent Systems202130(1): 947-965.
45 龚树凤, 龙伟军, 贲德, 等. 组网雷达自适应模糊CFAR检测融合算法[J]. 系统工程与电子技术202244(1): 100-107.
  GONG S F, LONG W J, BEN D, et al. Adaptive fuzzy CFAR detection fusion algorithm for netted radar[J]. Systems Engineering and Electronics202244(1): 100-107 (in Chinese).
46 CHEN B, LUO X L. Incipient fault detection benefited from voting fusion strategy on analysis of process variation[J]. Chemometrics and Intelligent Laboratory Systems2021215: 104347.
47 李程, 夏丹, 董世运, 等. 复杂陆战场环境下的智能感知理论现状与发展[J]. 国防科技202142(3): 42-48.
  LI C, XIA D, DONG S Y, et al. Current situation and future development of intelligent perception theory in complex land battlefield environment[J]. National Defense Technology202142(3): 42-48 (in Chinese).
48 罗俊海, 杨阳. 基于数据融合的目标检测方法综述[J]. 控制与决策202035(1): 1-15.
  LUO J H, YANG Y. An overview of target detection methods based on data fusion[J]. Control and Decision202035(1): 1-15 (in Chinese).
49 杨峰, 石振东, 姜勇, 等. 机载三波长激光雷达系统[J]. 中国科学: 技术科学202353(9): 1556-1566.
  YANG F, SHI Z D, JIANG Y, et al. Airborne three-wavelength LiDAR system[J]. Scientia Sinica (Technologica)202353(9): 1556-1566 (in Chinese).
50 颜世东, 杨望灿. 面向异构融合的飞行试验异常数据预测技术研究[J]. 舰船电子工程202242(5): 91-95.
  YAN S D, YANG W C. Complex data anomaly prediction technology based on heterogeneous fusion algorithm[J]. Ship Electronic Engineering202242(5): 91-95 (in Chinese).
51 王旭, 宁晨伽, 王文正, 等. 面向飞行试验的多源气动数据智能融合方法[J]. 空气动力学学报202341(2): 12-20.
  WANG X, NING C J, WANG W Z, et al. Intelligent fusion method of multi-source aerodynamic data for flight tests[J]. Acta Aerodynamica Sinica202341(2): 12-20 (in Chinese).
52 张蓓蓓. 面向多传感器综合探测的信息融合试飞方法[J]. 航空科学技术202132(9): 31-35.
  ZHANG B B. Information fusion flight test method for multi-sensor comprehensive detection[J]. Aeronautical Science & Technology202132(9): 31-35 (in Chinese).
53 王霖萱,李宏.基于边云协同的飞行试验数据处理系统[J].南京信息工程大学学报(自然科学版)202315(6): 692-702.
  WANG L X, LI H. Flight test data processing system based on clouding synergy[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition)202315(6): 692-702 (in Chinese).
54 闫鹏庆. 试飞改装构型管理与多BOM方法研究[J]. 中国设备工程2023(7): 73-75.
  YAN P Q. Research on configuration management and multi-BOM method of flight test modification[J]. China Plant Engineering2023(7): 73-75 (in Chinese).
55 栾瑞鹏,张静,刘立坤.面向装备试验鉴定领域数据治理的知识图谱本体构建[J/OL].系统工程与电子技术:1-10[2023-09-20].
  LUAN R P, ZHANG Q, LIU L K. A knowledge graph ontology construction for data governance in equipment test and evaluation field[J/OL]. Systems Engineering and Electronics:1-10[2023-09-20] (in Chinese).
56 李煦阳, 程波, 李振武. 基于试飞安全要素的飞参自动判读分析工程研究[J]. 设备管理与维修2022(20): 29-31.
  LI X Y, CHENG B, LI Z W. Engineering research on automatic interpretation and analysis of flight parameters based on flight test safety factors[J]. Plant Maintenance Engineering2022(20): 29-31 (in Chinese).
57 杨秋辉, 李进, 吕瑛洁. 装备试验大数据综合管理系统建设需求与应用场景研究[C]∥第四届体系工程学术会议——数字化转型中的体系工程, 2022: 109-114.
  YANG Q H, LI J, LYU Y J, et al. Research on construction requirements and application scenarios of equipment test big data integrated management system[C]∥ Proceedings of the 4th Systems Engineering Conference-Systems Engineering in Digital Transformation, 2022: 109-114 (in Chinese).
58 袁炳南, 霍朝晖, 白效贤. 飞行试验大数据技术发展及展望[J]. 计算机测量与控制201523(6): 1844-1847.
  YUAN B N, HUO Z H, BAI X X. Technology development and prospects of big data in flight test[J]. Computer Measurement & Control201523(6): 1844-1847 (in Chinese).
59 杜梓冰, 张立丰, 陈敬志, 等. 有人/无人机协同作战演示验证试飞关键技术[J]. 航空兵器201926(4): 75-81.
  DU Z B, ZHANG L F, CHEN J Z, et al. Critical technologies of demonstration flight test of cooperative operation for manned/unmanned aerial vehicles[J]. Aero Weaponry201926(4): 75-81 (in Chinese).
60 朱宝鎏, 朱荣昌, 熊笑非. 作战飞机效能评估[M]. 2版. 北京: 航空工业出版社, 2006.
  ZHU B L, ZHU R C, XIONG X F. Effectiveness evaluation of combat aircraft[M]. 2nd ed. Beijing: Aviation Industry Press, 2006 (in Chinese).
61 王荣浩, 高星宇, 向峥嵘. 有人/无人机协同系统及关键技术综述[J]. 兵器装备工程学报202344(8): 72-80.
  WANG R H, GAO X Y, XIANG Z R. Review on the manned/unmanned aerial vehicle cooperative system and key technologies[J]. Journal of Ordnance Equipment Engineering202344(8): 72-80 (in Chinese).
62 卢元杰, 龙珊珊, 赵航, 等. 基于混合模型的异构无人机蜂群效能评估[J/OL]. 系统仿真学报: 1-13[2023-09-20].
  LU Y J, LONG S S, ZHAO H, et al. Effectiveness evaluation of heterogeneous UAV swarm system based on a hybrid model[J/OL]. Journal of System Simulation: 1-13[2023-09-20] (in Chinese).
63 杜梓冰, 段亚, 陈敬志, 等. 基于试飞的察打一体无人机任务效能评估方法[J]. 兵器装备工程学报201940(6): 39-42.
  DU Z B, DUAN Y, CHEN J Z, et al. Operational effectiveness evaluation method of reconnaissance and strike integrated UAV based on flight test[J]. Journal of Ordnance Equipment Engineering201940(6): 39-42 (in Chinese).
64 戴卫兵, 李盘文, 艾波. 新一代民机综合航电总线试飞测试技术[C]∥第八届民用飞机航电国际论坛, 2019: 6.
  DAI W B, LI P W, AI B. A new generation of civil aircraft integrated avionics bus test technology[C]∥ Proceedings of the 8th International Forum on Civil Aircraft Avionics. Aviation Industry Press, 2019: 6 (in Chinese).
65 高扬, 潘鹏飞, 李秋锋, 等. 某型螺旋桨拉力确定试飞参数不确定度分配及验证[J]. 飞行力学201836(3): 93-96.
  GAO Y, PAN P F, LI Q F, et al. Parameter uncertainty distribution and verification for a certain propeller thrust determination flight test[J]. Flight Dynamics201836(3): 93-96 (in Chinese).
66 MCSHEA R. Test and evaluation of aircraft avionics and weapon systems[M]. Reston: AIAA, 2010.
Outlines

/