Articles

High pressure combustion experiment for hypergolic propellant unlike doublet injectors

  • Feng ZHANG ,
  • Yi SUN ,
  • Shuai SHANG ,
  • Baoe YANG
Expand
  • National Key Laboratory of Aerospace Liquid Propulsion,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China

Received date: 2023-08-31

  Revised date: 2023-09-14

  Accepted date: 2023-10-07

  Online published: 2023-10-13

Supported by

National Level Program

Abstract

To guide the design of thrust chamber injectors for high chamber pressure orbits and attitude control rocket engines, we conduct combustion tests of NTO/MMH unlike doublet injectors at high pressure using the chrome bronze heat sink combustor. The effects of the mixing ratio, ratio of injection orifice diameter, Rupe number, impinging angle and chamber pressure on the characteristic velocity and combustion efficiency are obtained. The results show that, increase in the mixing ratio, ratio of injection orifice diameter, Rupe number or impinging angle leads to initial increase, then constant, and final decrease in the characteristic velocity and combustion efficiency. With the increase of the chamber pressure, the characteristic velocity and combustion efficiency first increase significantly and then remain unchanged. A mixing ratio between 1.71 and 2.31, injection orifice diameter 1.2 and 1.4, Rupe number 0.68 and 1.28, impinging angle 70°and 80°, and chamber pressure over 3 MPa indicate a high combustion efficiency level of 0.97-0.98.

Cite this article

Feng ZHANG , Yi SUN , Shuai SHANG , Baoe YANG . High pressure combustion experiment for hypergolic propellant unlike doublet injectors[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529507 -529507 . DOI: 10.7527/S1000-6893.2023.29507

References

1 RUPE J H. The liquid phase mixing of a pair of impinging streams: No. 20-195[R]. Washington,D.C.: NASA, 1953.
2 RUPE J H. A correlation between the dynamic properties of a pair of impinging streams and the uniformity of mixture ratio distribution in the resulting spray: No. 20-209[R]. Washington, D.C.: NASA, 1956.
3 ELVERUM G, MOREY T. Criteria for optimum mixture-ratio distribution using several types of impinging-stream injector elements: No.30-5[R]. Washington,D.C.: NASA, 1959.
4 WROBEL J R. Some effects of gas stratification on choked nozzle flows[J]. Journal of Spacecraft and Rockets19652(6): 918-922.
5 RIEBLING R W. Criteria for optimum propellant mixing in impinging-jet injection elements[J]. Journal of Spacecraft and Rockets19674(6): 817-819.
6 HOUSEMAN J. Optimum mixing of hypergolic propellants in an unlike doublet injector element[J]. AIAA Journal19708(3): 597-599.
7 HOUSEMAN J, LEE A. Popping phenomena with the hydrazine nitrogen-tetroxide propellant system[J]. Journal of Spacecraft and Rockets19729(9): 678-682.
8 INOUE C, NOZAKI K, FUJII G, et al. Water flow diagnostics for predicting Bi-propellant thruster performance: AIAA-2017-4934[R]. Reston: AIAA, 2017.
9 INOUE C, OISHI Y, DAIMON Y, et al. Direct formulation of bipropellant thruster performance for quantitative cold-flow diagnostic[J]. Journal of Propulsion and Power202137(6): 842-849.
10 CLAPP S, FALK A, NAGAI C. Space storable propellant performance study Final report: CR-72487[R]. Washington, D.C.: NASA, 1968.
11 STECHMAN R C, OBERSTONE J, STECHMAN J C. Design criteria for film cooling for small liquid-propellant rocket engines[J]. Journal of Spacecraft and Rockets19696(2): 97-102.
12 SATO K, SUDO T, TADANO M, et al. A study of N2O4/Amine injector elements part 1 cold flow test: NAL TR-899[R]. Bangalore: National Aerospace Laboratory, 1986.
13 WON Y D, CHO Y H, LEE S W, et al. Effect of momentum ratio on the mixing performance of unlike split triplet injectors[J]. Journal of Propulsion and Power200218(4): 847-854.
14 YUAN T, CHEN C, HUANG B. The comparison of the hot-fire and cold-flow observations of NTO/MMH impinging combustion: AIAA-2007-0781 [R]. Reston: AIAA, 2007.
15 TONY Y, CETERA C, BERLIN H. Observations of the spray phenomena of unlike-doublet impinging jets: F064[R]. Indianapolis: IOS Press, 2004.
16 YUAN T, CHEN C, HUANG B. Optical observation of the impingements of nitrogen tetroxide/monomethylhydrazine simulants[J]. AIAA Journal200644(10): 2259-2266.
17 刘晓伟, 胡伟, 曹晶, 等. 鲁泊数和孔径比对直流互击式喷注器性能的影响[J]. 火箭推进201036(3): 24-27.
  LIU X W, HU W, CAO J, et al. Effects of Rupe number and ratio of injection orifice diameter on unlike impinging injector performance[J]. Journal of Rocket Propulsion201036(3): 24-27 (in Chinese).
18 张蒙正, 陈炜, 杨伟东, 等. 撞击式喷嘴凝胶推进剂雾化及表征[J]. 推进技术200930(1): 46-51.
  ZHANG M Z, CHEN W, YANG W D, et al. Atomization and characteristics of gelled propellant with impinging injector[J]. Journal of Propulsion Technology200930(1): 46-51 (in Chinese).
19 王治军, 常新龙, 田干, 等. 液体火箭发动机推力室设计[M]. 北京: 国防工业出版社, 2014: 17-18.
  WANG Z J, CHANG X L, TIAN G, et al. Design for thrust chamber of liquid propellant rocket engines[M]. Beijing: National Defense Industry Press, 2014: 17-18 (in Chinese).
20 张蒙正, 李军, 陈炜, 等. 互击式喷嘴燃烧室燃烧效率实验[J]. 推进技术201233(1): 54-57.
  ZHANG M Z, LI J, CHEN W, et al. Experiments on combustion efficiency for impinging injector chamber[J]. Journal of Propulsion Technology201233(1): 54-57 (in Chinese).
21 张锋, 严宇, 王延涛, 等. 气氧/煤油富燃燃气发生器燃烧试验研究[J]. 推进技术201637(10): 1916-1921.
  ZHANG F, YAN Y, WANG Y T, et al. Experimental investigation on combustion in a fuel-rich GOx/kerosene gas generator[J]. Journal of Propulsion Technology201637(10): 1916-1921 (in Chinese).
Outlines

/