Articles

Lightweight design of stiffening ribs layout of a bypass engine casing

  • Liang MENG ,
  • Jing ZHANG ,
  • Yadong WANG ,
  • Yang YU ,
  • Fan ZHANG ,
  • Jihong ZHU ,
  • Weihong ZHANG
Expand
  • 1.Shaanxi Key Laboratory of Aerospace Structures,Xi’an 710072,China
    2.School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China
    3.State IJR Center of Aerospace Design and Additive Manufacturing,Northwestern Polytechnical University,Xi’an 710072,China
    4.Beijing Institute of Power Machinery,Beijing 100074,China

Received date: 2023-05-19

  Revised date: 2023-06-14

  Accepted date: 2023-07-05

  Online published: 2023-10-08

Supported by

National Key Research and Development Program of China(2022YFB4603101);National Natural Science Foundation of China(12111530244);The Fundamental Research Funds for the Central Universities(D5000230049)

Abstract

This study focuses on the lightweight design of a specific bypass engine casing,considering the complex effects. A topology optimization approach is first employed to determine the optimal layout of stiffening ribs under various loading conditions. Additionally,taking into account the buckling stability requirements for the casing,the correlation between four common reinforcement configurations and structural buckling resistance is systematically studied. A hierarchical stiffening strategy on the basis of triangle and hexagonal patterns is proposed,and built a parametric model for the periodically stiffened casing. A comprehensive optimization design objective,based on stress levels of stiffening ribs and structural buckling resistance,is finally developed. The optimized reinforcement design for the bypass engine casing achieves a weight reduction of approximately 40% compared to the original design model. Moreover,it surpasses the structural stiffness and strength requirements and exhibits a significant enhancement of 212.9% in the critical buckling load when compared to a structure with a wall thickness of 1.3 mm. These advancements effectively ensure the operational stability of the bypass engine casing under severe load conditions.

Cite this article

Liang MENG , Jing ZHANG , Yadong WANG , Yang YU , Fan ZHANG , Jihong ZHU , Weihong ZHANG . Lightweight design of stiffening ribs layout of a bypass engine casing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(11) : 529021 -529021 . DOI: 10.7527/S1000-6893.2023.29021

References

1 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报201031(5): 1259-1265.
  HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle [J]. Journal of Astronautics201031(5): 1259-1265 (in Chinese).
2 解发瑜, 李刚, 徐忠昌. 高超声速飞行器概念及发展动态[J]. 飞航导弹2004(5): 27-31.
  XIE F Y, LI G, XU Z C. Hypersonic vehicle concepts and developments[J]. Cruise Missile2004(5): 27-31 (in Chinese).
3 CHEN L, ZHANG W, MENG L, et al. An adaptive T-spline finite cell method for structural shape optimization [J]. Structural and Multidisciplinary Optimization202061: 1857-1876.
4 JIU L P, ZHANG W H, MENG L, et al. A CAD-oriented structural topology optimization method [J]. Computers & Structures2020239: 106324.
5 张卫红, 章胜冬, 高彤. 薄壁结构的加筋布局优化设计[J]. 航空学报200930(11): 2126-2131.
  ZHANG W H, ZHANG S D, GAO T. Stiffener layout optimization of thin walled structures [J]. Acta Aeronautica et Astronautica Sinica200930(11): 2126-2131 (in Chinese).
6 FENG S Q, ZHANG W H, MENG L, et al. Stiffener layout optimization of shell structures with B-spline parameterization method[J]. Structural and Multidisciplinary Optimization202163: 2637-2651.
7 CUI J C, SU Z, ZHANG W H, et al. Buckling optimization of non-uniform curved grid-stiffened composite structures (NCGCs) with a cutout using conservativeness-relaxed globally convergent method of moving asymptotes[J]. Composite Structures2022280: 114842.
8 WANG D, ABDALLA M M, WANG Z P, et al. Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures[J]. Computer Methods in Applied Mechanics and Engineering2019344: 1021-1050.
9 田智亮, 孙秦. 复合材料加筋筒段压载荷承载能力优化[J]. 航空工程进展20145(3): 377-382.
  TIAN Z L, SUN Q. Optimization of compressive load bearing capacity of composite material reinforced cylinder section[J]. Advances in Aeronautical Science and Engineering20145(3): 377-382 (in Chinese).
10 彭宇辰, 陈秀华, 吴亚东. 基于ABAQUS的加筋球壳参数化建模及屈曲分析[J]. 航空工程进展202213(5): 123-130, 170.
  PENG Y C, CHEN X H, WU Y D. Parametric modeling and buckling analysis of reinforced spherical shell based on ABAQUS[J]. Advances in Aeronautical Science and Engineering202213(5): 123-130, 170 (in Chinese).
11 王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报201936(1): 1-12.
  WANG B, HAO P, TIAN K. Recent advances in structural analysis and optimization of stiffened shells [J]. Chinese Journal of Computational Mechanics201936(1): 1-12 (in Chinese).
12 ZHANG W H, FENG S Q. Combined parameterization of material distribution and surface mesh for stiffener layout optimization of complex surfaces[J]. Structural and Multidisciplinary Optimization202265(3): 103.
13 王博, 周子童, 周演, 等. 薄壁结构多层级并发加筋拓扑优化研究[J]. 计算力学学报202138(4): 487-497.
  WANG B, ZHOU Z T, ZHOU Y, et al. Concurrent topology optimization of hierarchical stiffened thin-walled structures[J]. Chinese Journal of Computational Mechanics202138(4): 487-497 (in Chinese).
14 李增聪, 陈燕, 李红庆, 等. 面向集中力扩散的回转曲面加筋拓扑优化方法[J]. 航空学报202142(9): 224616.
  LI Z C, CHEN Y, LI H Q, et al. Topology optimization method for concentrated force diffusion on stiffened curved shell of revolution[J]. Acta Aeronautica et Astronautica Sinica202142(9): 224616 (in Chinese).
15 张彦军, 朱亮, 杨味平, 等. 舰载机机身加筋壁板屈曲疲劳试验[J]. 航空学报201940(4): 622276.
  ZHANG Y J, ZHU L, YANG W P, et al. Bucking fatigue test of fuselage stiffened panel for carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(4): 622276 (in Chinese).
16 孟亮, 仲明哲, 李文彪, 等. 面向增材制造的航空发动机外部系统支架拓扑优化设计[J]. 中国机械工程202233(23): 2822-2832.
  MENG L, ZHONG M Z, LI W B, et al. Topology optimization design of aero-engine external system support for additive manufacturing[J]. Chinese Journal of Mechanical Engineering202233(23): 2822-2832 (in Chinese).
17 马祥涛, 王法垚, 朱英杰, 等. 面向缺陷容忍的加筋筒壳快速优化设计[J]. 航空学报202344(1): 226430.
  MA X T, WANG F Y, ZHU Y J, et al. Accelerated optimization design of stiffened cylindrical shell for imperfection tolerance[J]. Acta Aeronautica et Astronautica Sinica202344(1): 226430 (in Chinese).
18 姜周, 范雨, 李琳, 等. 基于禁带机理的加筋板减震设计方法[J]. 航空学报202243(9): 226007.
  JIANG Z, FAN Y, LI L, et al. Design method of stiffened plate for vibration reduction based on band gaps[J]. Acta Aeronautica et Astronautica Sinica202243(9): 226007 (in Chinese).
19 高伟, 刘存, 陈顺强. 变厚度复合材料加筋板轴压试验及分析方法[J]. 航空学报202243(11): 526764.
  GAO W, LIU C, CHEN S Q. Axial compression test and analysis method of composite stiffened plates with variable thickness[J]. Acta Aeronautica et Astronautica Sinica202243(11): 526764 (in Chinese).
20 董伟, 李扬, 辛克浩, 等. 基于拓扑优化的点阵-加筋板式结构设计方法[J]. 西北工业大学学报202139(6): 1233-1239.
  DONG W, LI Y, XIN K H, et al. Design method of lattice-stiffened slab structure based on topology optimization[J]. Journal of Northwestern Polytechnical University202139(6): 1233-1239 (in Chinese).
21 PAUL R. Boeing’s Starliner spacecraft: A guide [EB/OL]. (2021-08-03) [2023-07-02]. .
22 PRATT, WHITNEY. F119 engine [EB/OL]. (2017-01-15) [2023-07-02]. .
23 UNIVERSE TODAY. Enter the Dragon: First look inside SpaceX’s new crew transporter to orbit-photos[EB/OL]. (2014-06-06) [2023-07-02]. .
24 LI G, CHENG J. A generalized analytical modeling of grid stiffened composite structures [J]. Journal of Composite Materials200741(24): 2939-2969.
25 HUYBRECHTS T. Analysis and behavior of grid structures[J]. Composites Science and Technology199656(9): 1001-1015.
26 杨柳, 阳志光, 王鲲鹏. 网格加筋壳结构局部受热轴压承载能力分析[J]. 强度与环境201037(2): 17-23.
  YANG L, YANG Z G, WANG K P. Carrying capacity of shell stiffened with grid under axial compression and local heating[J]. Structure & Environment Engineering201037(2): 17-23 (in Chinese).
27 JOHN P E, PETER W, ADRIAN V, et al. Design and testing of the minotaur advanced grid-stiffened fairing [J]. Composite Structures200466: 339-349.
28 BOUAZIZI M, LAZGHAB T, SOULA M. Mechanical response of a hexagonal grid stiffened design of a pressurized cylindrical shell-application to aircraft fuselage[J]. Thin-Walled Structures2018127: 40-50.
29 乐晨, 曹昱, 杨帆, 等. 基于Abaqus的等边三角形网格加筋壳建模分析方法及试验验证研究[J]. 导弹与航天运载技术2019(2): 12-16.
  YUE C, CAO Y, YANG F, et al. The analysis method and experimental verification of isogrid stiffened shell based on Abaqus[J]. Missiles and Space Vehicles2019(2): 12-16 (in Chinese).
30 HAO P, WANG B, TIAN K, et al. Fast procedure for non-uniform optimum design of stiffened shells under buckling constraint[J]. Structural and Multidisciplinary Optimization201755: 1503-1516.
31 MENG L, ZHANG J, HOU Y L, et al. Revisiting the Fibonacci spiral pattern for stiffening rib design[J]. International Journal of Mechanical Sciences2023246: 108131.
Outlines

/