Icing and Anti/De-icing

Scaling law for salty sea spray icing wind tunnel test

  • Yu LIU ,
  • Mengjie QIN ,
  • Qiang WANG ,
  • Xian YI
Expand
  • 1.Low Speed Aerodynamic Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.Anti/de-icing Key Laboratory,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2023-07-10

  Revised date: 2023-07-16

  Accepted date: 2023-08-07

  Online published: 2023-08-24

Supported by

National Natural Science Foundation of China(12172372);National Major Science and Technology Projects(J2019-III-0017-0061)

Abstract

When ships navigate in polar regions, a large amount of low-temperature salt-containing spray exists in the air. Long-term exposure to the spray can cause the upper structure of the vessel and the internal intake of gas turbines to freeze, affecting the normal navigation of the ship. Large-scale icing wind tunnels can simulate the ice accretion of sea spray on ship components or scaled models, but the corrosive effect of seawater spray can endanger equipment’s safety. Therefore, sea spray icing experiments were conducted on small-scale equipment. The study of scaling law was conducted in a wind tunnel to simulate the icing of salinity sea spray. Physical properties were tested on various components of seawater samples, obtaining the surface tension, thermal conductivity, specific heat capacity, phase transition temperature, and latent heat. On the basis of classical similarity theory, the main differences between the icing of sea spray and pure water were analyzed. The classical icing wind tunnel scaling law was adopted and modified with the extension of the water film similarity and sea spray freezing coefficient. Ultimately, a scaling parameter equation for salinity sea spray icing was established, along with a corresponding process for scaling transformation. The icing condition of the NACA0012 model under sea spray conditions was scaled with the established scaling law, and the NNW-ICE software is used to validate the scaling law. The results indicate that via establishing the scaling law, it is possible to simulate the ice shape of salinity sea spray using pure water in icing wind tunnel tests. This study provides significant theoretical support for large-scale icing wind tunnels to conduct sea spray icing tests.

Cite this article

Yu LIU , Mengjie QIN , Qiang WANG , Xian YI . Scaling law for salty sea spray icing wind tunnel test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S2) : 729297 -729297 . DOI: 10.7527/S1000-6893.2023.29297

References

1 周靓, 李维浩, 石雅楠, 等. 船舶飞沫结冰研究综述[J]. 舰船科学技术202244(10): 1-5.
  ZHOU L, LI W H, SHI Y N, et al. Overview of foreign research on ship spray icing[J]. Ship Science and Technology202244(10): 1-5 (in Chinese).
2 SAMUELSEN E M, EDVARDSEN K, GRAVERSEN R G. Modelled and observed sea-spray icing in Arctic-Norwegian waters[J]. Cold Regions Science and Technology2017134: 54-81.
3 FUKUSAKO S, HORIBE A, TAGO M. Ice accretion characteristics along a circular cylinder immersed in a cold air stream with seawater spray[J]. Experimental Thermal and Fluid Science19892(1): 81-90.
4 BHATIA K, KHAN F. A predictive model to estimate ice accumulation on ship and offshore rig[J]. Ocean Engineering2019173: 68-76.
5 KULYAKHTIN A. Numerical modelling and experiments on sea spray icing[D]. Norwegian:Norwegian University of Science and Technology, 2014.
6 DEHGHANI-SANIJ A, MAHMOODI M, DEHGHANI S R, et al. Experimental investigation of vertical marine surface icing in periodic spray and cold conditions[J]. Journal of Offshore Mechanics and Arctic Engineering2019141(2): 021502.
7 DESHPANDE S, S?TERDAL A, SUNDSB? P A. Experiments with sea spray icing: investigation of icing rates[J]. Journal of Offshore Mechanics and Arctic Engineering2024146(1): 011601.
8 MU Z Q, GUO W F, LI Y, et al. Wind tunnel test of ice accretion on blade airfoil for wind turbine under offshore atmospheric condition[J]. Renewable Energy2023209: 42-52.
9 VARGAS M, PAPADAKIS M, POTAPCZUK M, et al. Ice accretions on a swept GLC-305 airfoil[C]∥SAE Technical Paper Series. 2002.
10 STRUK P, AGUI J, RATVASKY T, et al. Ice-crystal icing accretion studies at the NASA propulsion systems laboratory: 10.4271/2019-01-1921 [R]. Washington, D.C.:NASA, 2019
11 OLESKIW M, HYDE F, PENNA P. In-flight icing simulation capabilities of NRC’s altitude icing wind tunnel[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. 2001.
12 BERTHOUMIEU P, DéJEAN B, BODOC V, et al. ONERA research icing wind tunnel[C]∥Proceedings of the AIAA Aviation 2022 Forum. 2022.
13 刘森云, 王桥, 易贤, 等. 3 m×2 m结冰风洞试验技术新进展(2020—2022年)[J]. 空气动力学学报202341(1): 57-65.
  LIU S Y, WANG Q, YI X, et al. New progress of 3 m × 2 m icing wind tunnel test technology from 2020 to 2022[J]. Acta Aerodynamica Sinica202341(1): 57-65 (in Chinese).
14 RUFF G A. Analysis and verification of the icing scaling equations[D]. Tennessee: University of Tennessee, 1986.
15 RUFF G, ANDERSON D. Quantification of ice accretions for icing scaling evaluations[C]∥Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998.
16 KIND R, OLESKIW M M. Recent Developments in scaling methods for icing wind tunnel testing at reduced scale[C]∥ICAS Congress Conference. 2002.
17 ANDERSON D N, FEO A. Ice-accretion scaling using water-film thickness parameters[M]. 2012.
18 周志宏, 易贤, 桂业伟, 等. 考虑水滴动力学效应的结冰试验相似准则[J]. 实验流体力学201630(2): 20-25.
  ZHOU Z H, YI X, GUI Y W, et al. Icing scaling law with the dynamic effects of water droplets[J]. Journal of Experiments in Fluid Mechanics201630(2): 20-25 (in Chinese).
19 易贤, 周志宏, 杜雁霞, 等. 考虑相变时间效应的结冰试验相似参数[J]. 实验流体力学201630(2): 14-19.
  YI X, ZHOU Z H, DU Y X, et al. An icing scaling parameter with the effects of phase change time[J]. Journal of Experiments in Fluid Mechanics201630(2): 14-19 (in Chinese).
20 张丽芬, 葛鑫, 张斐, 等. 旋转帽罩结冰相似准则的冰风洞试验研究[J]. 实验流体力学202135(4): 52-59.
  ZHANG L F, GE X, ZHANG F, et al. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics202135(4): 52-59 (in Chinese).
21 刘宇, 易贤, 王强, 等. 结冰风洞试验混合相似转换方法及其验证[J]. 空气动力学学报202139(2): 176-183.
  LIU Y, YI X, WANG Q, et al. A hybrid scaling method for icing wind tunnel and validation[J]. Acta Aerodynamica Sinica202139(2): 176-183 (in Chinese).
22 张晶. 海卤水浓缩过程中锂浓度的变化规律研究[D]. 天津: 天津科技大学, 2012.
  ZHANG J. Research on variation of lithium concentration during the seawater and brine concentration process[D]. Tianjin: Tianjin University of Science & Technology, 2012 (in Chinese).
23 ANDERSON D.N. Manual of scaling method: NASA/CR-2004-212875 [R]. Washington, D.C.: NASA, 2004.
24 BRAGG M B. A similarity analysis of the droplet trajectory equation[J]. AIAA Journal198220(12): 1681-1686.
25 Wright W B. User manual for the Nasa Glenn ice accretion code LEWICE vesion 2.0: NASA/CR-1999-209409 [R]. Washington, D.C.: NASA, 1999.
26 LANGMUIR I, BLODGETT K. Mathematical investigation of water droplet trajectories[R]. Army Air Forces Technical Report. 1946.
27 BILANIN A, ANDERSON D. Ice accretion with varying surface tension: AIAA-1995-0538 [R] Reston: AIAA, 1993.
28 FEO A, URDIALES M. Stagnation point probe in a water spray immersed in an airstream: AE/TNO/0452/003/INTA/95 [R]. 1995.
29 MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences195320(1): 29-42.
30 任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报202035(12): 2553-2561.
  REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power202035(12): 2553-2561 (in Chinese).
31 任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报202139(1): 52-58, 72.
  REN J H, WANG Q, LIU Y, et al. Numerical simulation of droplet impingement characteristics on a high-lift configuration of a large commercial transport aircraft[J]. Acta Aerodynamica Sinica202139(1): 52-58, 72 (in Chinese).
32 任靖豪, 王强, 李维浩, 等. 基于梯度下降的水滴收集率计算方法[J]. 航空学报202344(4): 6-15.
  REN J H, WANG Q, LI W H, et al. A prediction algorithm of collection efficiency based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica202344(4): 6-15 (in Chinese).
33 CHEN N L, HU Y P, JI H H, et al. Hot-air anti-icing heat transfer and surface temperature modeling[J]. AIAA Journal202159(9): 3657-3666.
Outlines

/