ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Multiscale hybrid modeling and tensile properties of 2D braided C/SiC with hole-edge densification structures
Received date: 2023-03-16
Revised date: 2023-04-10
Accepted date: 2023-06-18
Online published: 2023-08-24
Supported by
Basic Science Foundation for Aeroengine and Gas Turbines(2022-DC-I-002-001);the Fundamental Research Funds for the Central Universities(D5000210125)
A modelling method is proposed to characterise the densification structure of the hole edges of 2D braided C/SiC composites during Chemical Vapour Infiltration (CVI). A Representative Volumetric Element (RVE) model, taking into account the random distribution of holes, is developed to calculate the equivalent elastic modulus of 2D braided C/SiC composites. On this basis, a macro-meso hybrid model of 2D braided C/SiC composites with a densified structure of the hole edge is developed. Based on the 3D hashin failure criterion and the modified Von Mises failure criterion, the progressive damage model of the 2D braided C/SiC composite is developed, and its uniaxial tensile stress-strain behaviour is simulated. The validity of the model is verified by comparison and analysis with experimental data. The tensile strength of the open-hole 2D braided C/SiC composites is calculated for different porosities, radii of the dense zone and hole diameters, and the effects are analysed. The results show that with the increase of porosity, the material stiffness and tensile strength decreased, when the porosity increased from 5% to 20%, the tensile strength decreased by 26.05%; with the increase of radius of dense zone, the material stiffness decreased more slowly and the failure strength increased, when the radius of dense zone increased from 0 mm to 0.75 mm, the tensile strength increased by 14.17%; with the increase of hole diameter, the hole edge stress concentration effect is enhanced, the degree of damage to the hole edge increased, the faster the material damage, when the hole diameter increases from 0.5 mm to 2 mm, the tensile strength decreased by 35.01%.
Zhuoqun JIANG , Sheng HUANG , Zhanxue WANG . Multiscale hybrid modeling and tensile properties of 2D braided C/SiC with hole-edge densification structures[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(13) : 628713 -628713 . DOI: 10.7527/S1000-6893.2023.28713
1 | 刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5. |
LIU D X. One generation of new material, one generation of new type engine: Development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5 (in Chinese). | |
2 | TU Z C, MAO J K, HAN X S, et al. Prediction model for the anisotropic thermal conductivity of a 2.5-D braided ceramic matrix composite with thin-wall structure[J]. Applied Sciences, 2019, 9(5): 875. |
3 | 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022, 43(2): 113-131. |
DU K, CHEN Q H, MENG X L, et al. Advancement in application and thermal analysis of ceramic matrix composites in aeroengine hot components[J]. Journal of Propulsion Technology, 2022, 43(2): 113-131 (in Chinese). | |
4 | GAVALDA DIAZ O, AXINTE D A, BUTLER-SMITH P, et al. On understanding the microstructure of SiC/SiC Ceramic Matrix Composites (CMCs) after a material removal process[J]. Materials Science and Engineering: A, 2019, 743: 1-11. |
5 | TU Z C, MAO J K, HAN X S. Numerical study of film cooling over a flat plate with anisotropic thermal conductivity[J]. Applied Thermal Engineering, 2017, 111: 968-980. |
6 | ZHONG F Q, BROWN G L. Experimental study of multi-hole cooling for integrally-woven, ceramic matrix composite walls for gas turbine applications[J]. International Journal of Heat and Mass Transfer, 2009, 52(3-4): 971-985. |
7 | YU H J, ZHOU X G, ZHANG W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces[J]. Composites Science and Technology, 2011, 71: 699-704. |
8 | MEYER P, WAAS A M. Experimental results on the elevated temperature tensile response of SiC/SiC ceramic matrix notched composites[J]. Composites Part B: Engineering, 2018, 143: 269-281. |
9 | ABISSET E, DAGHIA F, LADEVèZE P. On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(10): 1515-1524. |
10 | ZHOU S, SUN Y, CHEN B Y, et al. Progressive damage simulation of open-hole composite laminates under compression based on different failure criteria[J]. Journal of Composite Materials, 2017, 51(9): 1239-1251. |
11 | XIAO M L, ZHANG Y B, WANG Z H, et al. Tensile failure analysis and residual strength prediction of CFRP laminates with open hole[J]. Composites Part B: Engineering 2017, 126: 49-59. |
12 | WAN L, ISMAIL Y, SHENG Y, et al. Progressive failure analysis of CFRP composite laminates under uniaxial tension using a discrete element method[J]. Journal of Composite Materials, 2021, 55(8): 1091-1108. |
13 | 冉庆波, 肖鸿, 杨富鸿, 等. 含孔曲面自动铺丝轨迹规划算法[J]. 航空学报, 2022, 43(9): 425602. |
RAN Q B, XIAO H, YANG F H, et al. Trajectory planning algorithm for automatic wire laying on perforated surface[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425602 (in Chinese). | |
14 | GAO X G, YU G Q, XUE J G, et al. Failure analysis of C/SiC composites plate with a hole by the PFA and DIC method[J]. Ceramics International, 2017, 43(6): 5255-5266. |
15 | MEI H, ZHANG D, XIA J C, et al. The effect of hole defects on the oxidation behaviour of two-dimensional C/SiC composites[J]. Ceramics International, 2016, 42(14): 15479-15484. |
16 | ZHANG X H, GAO H S, WEN Z X, et al. Tension-tension fatigue behaviour of 3D braided SiCf/SiC composite with film cooling holes at 1 350 ℃ in air[J]. Ceramics International, 2020, 46(6): 7703-7710. |
17 | LIU Y S, HU C H, FENG W, et al. Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process[J]. Journal of the European Ceramic Society, 2014, 34(15): 3489-3498. |
18 | VIGNOLES G L. Modeling of chemical vapor infiltration processes[M]∥ Advances in Composites Manufacturing and Process Design. Amsterdam: Elsevier, 2015: 415-458. |
19 | ZHANG J X, LIU Y S, CHENG L F, et al. Effect of a diffusion-enhancing hole on the densification of a thick-section 2D C/SiC composite[J]. Journal of the European Ceramic Society, 2019, 39(15): 4609-4616. |
20 | 王晶. LA-CVI法制备C/SiC陶瓷基复合材料的微结构设计与性能调控[D]. 西安: 西北工业大学, 2018: 91-93. |
WANG J. Microstructure design and performance control of C/SiC composites fabricated by LA-CVI process[D]. Xi’an: Northwestern Polytechnical University, 2018: 91-93 (in Chinese). | |
21 | 惠新育, 许英杰, 张卫红, 等. 平纹编织SiC/SiC复合材料多尺度建模及强度预测[J]. 复合材料学报, 2019, 36(10): 2380-2388. |
HUI X Y, XU Y J, ZHANG W H, et al. Multi-scale modeling and strength prediction of plain woven SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2380-2388 (in Chinese). | |
22 | 王奇志, 林慧星, 许赟泉. 二维编织陶瓷基复合材料偏轴拉伸力学性能预测[J]. 复合材料学报, 2018, 35(12): 3423-3432. |
WANG Q Z, LIN H X, XU Y Q. Mechanical properties prediction of 2D braided ceramic matrix composites under off-axial tension[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3423-3432 (in Chinese). | |
23 | 张锦, 张乃恭. 新型复合材料力学机理及其应用[M]. 北京: 北京航空航天大学出版社, 1993: 231. |
ZHANG J, ZHANG N G. Mechanical mechanism and application of new composite materials[M]. Beijing: Beihang University Press, 1993: 231 (in Chinese). | |
24 | WANG J, CHENG L F, LIU Y S, et al. Enhanced densification and mechanical properties of carbon fiber reinforced silicon carbide matrix composites via laser machining aided chemical vapor infiltration[J]. Ceramics International, 2017, 43(14): 11538-11541. |
25 | LEMAITRE J, DESMORAT R. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures[M]. Berlin: Springer, 2005. |
26 | HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. |
27 | HA S K, JIN K K, HUANG Y C. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites[J]. Journal of Composite Materials, 2008, 42(18): 1873-1895. |
28 | KADDOUR A, HINTON M. Input data for test cases used in benchmarking triaxial failure theories of composites[J]. Journal of Composite Materials, 2012, 46(19-20): 2295-2312. |
29 | HUANG Y C, XU L, HA S K. Prediction of three-dimensional composite laminate response using micromechanics of failure[J]. Journal of Composite Materials, 2012, 46(19-20): 2431-2442. |
30 | RAGHAVA R, CADDELL R M, YEH G S Y. The macroscopic yield behaviour of polymers[J]. Journal of Materials Science, 1973, 8(2): 225-232. |
31 | HOLLISTER S J, KIKUCHI N. A comparison of homogenization and standard mechanics analyses for periodic porous composites[J]. Computational Mechanics, 1992, 10(2): 73-95. |
/
〈 |
|
〉 |