ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimization of turbocharging system for aviation piston pump based on entropy production theory
Received date: 2023-05-17
Revised date: 2023-05-30
Accepted date: 2023-07-06
Online published: 2023-07-28
Supported by
National Natural Science Foundation of China(52265005)
The integration of turbocharging system at the inlet end of aviation piston pump is conducive to improving the integration of aviation hydraulic system, and solving the problems of cavitation and boot removal caused by insufficient oil absorption of the plunger pump at high speed. Aiming at the optimization design of blades and pressurized chamber flow channels in turbocharging system, the energy loss and spatial distribution in the pressurized system are studied based on the entropy production theory, and the fluid domain model of the turbo self-boosting axial piston pump is constructed to explore the changes of pressurized chamber form, section shape, inlet width, section area, and the relationship between turbine blade form and entropy yield. The structure of the turbocharging system is optimized to minimize the entropy production, ie. when the turbine adopts twisted blades, the pressurized water chamber adopts a spiral shape, the cross-section shape adopts a circular arc, the inlet width of the pressurized water chamber adopts 8mm, and the cross-section area change law is U-shaped, the total entropy production of the pressurized system decreases by about 0.032 W/K, which is 13% lower than before optimization, and the boost value increases by about 0. 22 bar, 7% more than before optimization. Finally, the prototype was used to build the test system, and the turbocharging values in the form of straight blades and twisted blades were tested, and the test results were basically consistent with the simulation results.
Yuanling CHEN , Jiawen CHEN , Yueyang PAN , Mingyang YAN . Optimization of turbocharging system for aviation piston pump based on entropy production theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(4) : 429015 -429015 . DOI: 10.7527/S1000-6893.2023.29015
1 | GUO S R, CHEN J H, LU Y L, et al. Hydraulic piston pump in civil aircraft: current status, future directions and critical technologies[J]. Chinese Journal of Aeronautics, 2020, 33(1): 20-34. |
2 | 欧阳小平, 王天照, 方旭. 高速航空柱塞泵研究现状[J]. 液压与气动, 2018(2):1-8. |
OUYANG X P, WANG T Z, FANG X. Research status of the high speed aircraft piston pump[J]. Chinese Hydraulics & Pneumatics, 2018(2): 1-8 (in Chinese). | |
3 | 陈金华. 基于离心涡轮的液压柱塞泵自增压技术研究[J]. 机械工程师, 2012(7): 18-20. |
CHEN J H. Self-pressurized study of hydraulic piston pump based on the centrifugal turbine[J]. Mechanical Engineer, 2012(7): 18-20 (in Chinese). | |
4 | 张振寿. 高转速柱塞泵动态特性研究[D]. 杭州: 浙江大学, 2015: 51-58. |
ZHANG Z S. Research on the dynamic characteristics of the high speed piston pump[D]. Hangzhou: Zhejiang University, 2015: 51-58 (in Chinese). | |
5 | DONG H K, HE Y, WANG Y, et al. Numerical investigation of effect of a centrifugal boost impeller on suction performance of an aircraft hydraulic pump[J]. Chinese Journal of Aeronautics, 2022, 35(8): 236-248. |
6 | 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565. |
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese). | |
7 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
8 | GONG R Z, WANG H J, CHEN L X, et al. Application of entropy production theory to hydro-turbine hydraulic analysis[J]. Science China (Technological Sciences), 2013, 56(7): 1636-1643. |
9 | LI X J, JIANG Z W, ZHU Z C, et al. Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(24): 4637-4646. |
10 | HOU H C, ZHANG Y X, ZHOU X, et al. Optimal hydraulic design of an ultra-low specific speed centrifugal pump based on the local entropy production theory[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233(6):715-726. |
11 | 綦蕾, 邹正平, 刘火星, 等. 高负荷涡轮端区非定常流动相互作用研究[J]. 航空学报, 2009, 30(4): 584-596. |
QI L, ZOU Z P, LIU H X, et al. Unsteady flow interaction in endwall regions of high of high-loaded turbine stage[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 584-596 (in Chinese). | |
12 | BEJAN A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes[J]. Choice Reviews Online, 1996, 33(7): 33-39. |
13 | KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 672-680. |
14 | 曾鸿基, 李正贵, 李德友, 等. 水泵水轮机流场脉动与熵产率的关系[J]. 排灌机械工程学报, 2022, 40(8): 777-784. |
ZENG H J, LI Z G, LI D Y, et al. Relationship between flow pulsation and entropy production rate of pump turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(8): 777-784 (in Chinese). | |
15 | 邹正平, 刘火星, 唐海龙, 等. 高超声速航空发动机强预冷技术研究[J]. 航空学报, 2015, 36(8): 2544-2562. |
ZOU Z P, LIU H X, TANG H L, et al. Precooling technology study of hypersonic aeroengine[J]. Acta Aeronaytica et Astronautica Sinca, 2015, 36(8): 2544-2562 (in Chinese). | |
16 | 石祥钟, 孟燕, 赵文鲁. 基于CFD的双涡轮液力变矩器的改进研究[J]. 液压与气动, 2016(5): 37-41. |
SHI X Z, MENG Y, ZHAO W L. Improvement of a dual-turbine hydrodynamic torque converter based on CFD[J]. Chinese Hydraulics & Pneumatics, 2016(5): 37-41 (in Chinese). | |
17 | 陈大为, 朱惠人, 李华太, 等. 尾迹对涡轮动叶全表面气膜冷却效率的影响[J]. 航空学报, 2019, 40(3): 122651. |
CHEN D W, ZHU H R, LI H T, et al. Effect of unsteady wake on full coverage film cooling effectiveness for a turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 122651 (in Chinese). | |
18 | 关醒凡. 现代泵理论与设计[M]. 北京: 中国宇航出版社, 2011: 241-277. |
GUAN X F. Modern pump theory and design[M]. Beijing: China Astronautic Publishing House. 2011: 241-277 (in Chinese). | |
19 | 赵希枫. 基于CFD技术改善离心泵内部空化性能的研究[D]. 兰州: 兰州理工大学, 2009: 19-27. |
ZHAO X F. Research on improvement cavitation performance of a centrifugal pump based on CFD technique[D]. Lanzhou: Lanzhou University of Technology, 2019: 19-27 (in Chinese). | |
20 | 雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报, 2022, 43(3): 225064. |
LEI S Y, SUN J Z, LIU H. Cumulative damage index model and service reliability evaluation of turbine blade[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 225064 (in Chinese). | |
21 | 王福军. 水泵与泵站流动分析方法[M]. 北京: 中国水利水电出版社, 2020: 61-80. |
WANG F J. Analysis method of flow in pumps & pumping stations[M]. Beijing: China Water & Power Press, 2020: 61-80 (in Chinese). |
/
〈 |
|
〉 |