Fluid Mechanics and Flight Mechanics

Flow and separation characteristics of pressurized centrifugal separator for aero⁃engine

  • Le JIANG ,
  • Yibiao CHEN ,
  • Yanjun LI ,
  • Guilin LI ,
  • Tao LIU
Expand
  • 1.AECC Sichuan Gas Turbine Establishment,Chengdu 610500
    2.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129

Received date: 2023-03-09

  Revised date: 2023-04-03

  Accepted date: 2023-05-22

  Online published: 2023-06-16

Supported by

Independent Innovation Special Fund of Aero Engine Corporation of China

Abstract

The refined design of aero-engine oil systems relies on the mastery of the working performance of key components, including separators affecting the bearing chamber pressure and oil consumption. To study the flow and separation characteristics of a pressurized centrifugal separator, we obtain the effects of design parameters on pressure difference, separation efficiency, and the minimum separation diameter by numerical simulation, and quantitatively evaluate the sensitivity of design parameters. The results show that increasing the rotating speed can improve the separation and reduce the minimum separation diameter while increasing the airflow pressure. With rotating speed of 25 000 r/min, the air mass flow rate of 10 g/s, and the inlet pressure of 2 700 Pa lower than the outlet pressure, the separation efficiency can reach 99.5%. Increasing the air mass flow rate weakens the aerodynamic pressurization effect of the separator, and is not conducive to the effective separation of oil droplets. Adjusting the number of blades can achieve the best effect of aerodynamic pressurization, and the maximum variation of pressure difference can exceed by 30%. However, the number of blades has little effect on separation efficiency and the minimum separation diameter. The rotating speed has a significant influence on the pressure difference and separation efficiency, while the minimum separation diameter is most significantly affected by the air mass flow rate. In addition, the working characteristics of the separator are also affected by the interaction between the design parameters, and the reasonable matching of the design parameters according to the sensitivity coefficient can further improve the working performance.

Cite this article

Le JIANG , Yibiao CHEN , Yanjun LI , Guilin LI , Tao LIU . Flow and separation characteristics of pressurized centrifugal separator for aero⁃engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 128675 -128675 . DOI: 10.7527/S1000-6893.2023.28675

References

1 陈薄, 陈国定, 王涛. 轴承腔中均匀流体/壁面油膜分层流动分析[J]. 机械工程学报201450(21): 164-173.
  CHEN B, CHEN G D, WANG T. Analysis of homogeneous fluid/wall oil film two-phase stratified flow in an aero-engine bearing chamber[J]. Journal of Mechanical Engineering201450(21): 164-173 (in Chinese).
2 孙恒超, 陈国定, 王莉娜, 等. 轴承腔油滴含率及油滴相与空气能量传递分析[J]. 航空学报201637(3): 1060-1073.
  SUN H C, CHEN G D, WANG L N, et al. Oil droplets fractions and oil droplets/air energy transfer analysis in bearing chamber[J]. Acta Aeronautica et Astronautica Sinica201637(3): 1060-1073 (in Chinese).
3 吕亚国, 姜乐, 高晓果, 等. 高速轴承环下润滑收油叶片结构参数与工况参数间的匹配关系[J]. 航空学报202243(12): 559-573.
  LYU Y G, JIANG L, GAO X G, et al. Matching relationship between structural parameters and operating parameters of oil scoop blade for high-speed bearing with under-race lubrication[J]. Acta Aeronautica et Astronautica Sinica202243(12): 559-573 (in Chinese).
4 刘振侠, 江平. 航空发动机机械系统设计[M]. 北京: 科学出版社, 2022.
  LIU Z X, JIANG P. Mechanical system design of aero-engine[M]. Beijing: Science Press, 2022 (in Chinese).
5 WILLENBORG K, BUSAM S, RO?KAMP H, et al. Experimental studies of the boundary conditions leading to oil fire in the bearing chamber and in the secondary air system of aeroengines[C]∥ Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2004.
6 EASTWICK C N, SIMMONS K, WANG Y, et al. Study of aero-engine oil-air separators[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2006220(7): 707-717.
7 GLAHN A, BLAIR M F, ALLARD K L, et al. Disintegration of oil jets emerging from axial passages at the face of a rotating cylinder[J]. Journal of Engineering for Gas Turbines and Power2003125(4): 1003-1010.
8 SHERIDAN W G, SWAYZE S T, GLAHN J A. De-oiler system for improved oil containment[C]∥ Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006.
9 ELSAYED K, LACOR C. Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations[J]. Chemical Engineering Science201065(22): 6048-6058.
10 徐让书, 胡慧, 邵长浩, 等. 离心通风器通风阻力的影响因素[J]. 航空动力学报201429(10): 2410-2416.
  XU R S, HU H, SHAO C H, et al. Influencing factors of flow resistance in oil-air separator[J]. Journal of Aerospace Power201429(10): 2410-2416 (in Chinese).
11 LYU Y G, HU J P. Numerical simulation for air/oil separator of aero-engine[J]. Applied Mechanics and Materials2014510: 197-201.
12 LYU Y G, SHEN J Y, LIU Z X, et al. The improvement of air/oil separator performance in the aero-engine lubrication system[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
13 韩金在, 陈聪慧, 徐让书. 超高转速离心通风器性能仿真分析[J]. 航空动力学报201631(3): 685-691.
  HAN J Z, CHEN C H, XU R S. Simulation analysis on performance of a high speed centrifugal oil-air separator[J]. Journal of Aerospace Power201631(3): 685-691 (in Chinese).
14 张小彬, 朱卫兵, 张崇龙, 等. 叶轮式通风器分离效率计算方法[J]. 航空动力学报201833(4): 903-910.
  ZHANG X B, ZHU W B, ZHANG C L, et al. Calculation method to separation efficiency of impeller type ventilation[J]. Journal of Aerospace Power201833(4): 903-910 (in Chinese).
15 荆帅, 谷俊, 李国权. 润滑系统孔径式通风器的阻力计算模型及阻力特性分析[J]. 润滑与密封202045(9): 135-141, 148.
  JING S, GU J, LI G Q. Resistance calculation model and resistance characteristic analysis of orifice-separator in lubrication system[J]. Lubrication Engineering202045(9): 135-141, 148 (in Chinese).
16 荆帅, 谷俊, 马庆岩, 等. 辐板式通风器阻力计算方法及影响因素分析[J]. 航空发动机202147(5): 55-61.
  JING S, GU J, MA Q Y, et al. Resistance calculation method and influence factors analysis of the separator with blades[J]. Aeroengine202147(5): 55-61 (in Chinese).
17 蔡毅, 杨家军, 马磊. 航空发动机离心通风器性能试验[J]. 航空动力学报202136(12): 2683-2688.
  CAI Y, YANG J J, MA L. Aero-engine centrifugal separator performance test[J]. Journal of Aerospace Power202136(12): 2683-2688 (in Chinese).
18 WILLENBORG K, KLINGSPORN M, TEBBY S, et al. Experimental analysis of air∕oil separator performance[J]. Journal of Engineering for Gas Turbines and Power2008130(6): 062503.
19 STEIMES J, GRUSELLE F, HENDRICK P. Performance study of an air-oil pump and separator solution[C]∥ Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2012.
20 STEIMES J, GRUSELLE F, HENDRICK P. Study of an air-oil pump and separator solution for aero engine lubrication systems[C]∥ Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013.
21 赵静宇, 刘振侠, 吕亚国, 等. 蜂窝式轴心通风器油气分离性能计算[J]. 航空动力学报201631(7): 1583-1590.
  ZHAO J Y, LIU Z X, LYU Y G, et al. Computation on oil/gas separation performance of axial breather with honeycomb structure[J]. Journal of Aerospace Power201631(7): 1583-1590 (in Chinese).
22 ZHAO J Y, LIU Z X, REN G Z. The design and performance evaluation of axial ventilator with honeycomb in the turbofan engine lubrication system[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2016230(8): 1397-1408.
23 董哲, 徐让书, 胡慧. 蜂窝式轴心通风器分离效率数值模拟[J]. 沈阳航空航天大学学报201633(4): 19-24.
  DONG Z, XU R S, HU H. Calculation of separation efficiency in axial ventilator with honeycomb structure[J]. Journal of Shenyang Aerospace University201633(4): 19-24 (in Chinese).
24 CORDES A L, PYCHYNSKI B T, SCHWITZKE C C, et al. Experimental study of the pressure loss in aero-engine air-oil separators[J]. The Aeronautical Journal2017121(1242): 1147-1161.
25 李静, 王旭飞. 航空发动机金属泡沫通风器阻力特性研究[J]. 装备制造技术2021(7): 8-11, 29.
  LI J, WANG X F. Research on resistance characteristics of air-oil separator in aero-engine with metal foam under different working conditions[J]. Equipment Manufacturing Technology2021(7): 8-11, 29 (in Chinese).
26 NIE Z W, LIN Y Y, TONG Q B. Numerical simulations of two-phase flow in open-cell metal foams with application to aero-engine separators[J]. International Journal of Heat and Mass Transfer2018127: 917-932.
27 YAKHOT V, ORSZAG S A. Renormalization-group analysis of turbulence[J]. Physical Review Letters198657(14): 1722-1724.
28 刘铁英, 范利民, 郑刚. 用双 Rosin-Rammler 函数求颗粒尺寸分布[J]. 上海理工大学学报199820(2): 135-138.
  LIU T Y, FAN L M, ZHENG G. A new algorithm for determination of the particle size distribution with bimodel Rosin-Rammler function[J]. Journal of University of Shanghai for Science and Technology199820(2): 135-138 (in Chinese).
29 SOBOL' I M. Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modeling & Computational Experiment19931: 407-414.
30 SOBOL' I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation200155(1-3): 271-280.
31 SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments [J]. Statistical Science19894(4): 409-423.
32 李耀辉. 基于Kriging模型的仿真优化方法[M]. 武汉: 华中科技大学出版社, 2020.
  LI Y H. Simulation optimization method based on Kriging model[M].Wuhan: Huazhong University of Science and Technology Press, 2020 (in Chinese).
33 邵长浩. 基于CFD的航空发动机离心通风器的优化设计研究[D]. 沈阳: 沈阳航空航天大学, 2014.
  SHAO C H. Optimization design of centrifugal breather of aero engine based on CFD[D]. Shenyang: Shenyang Aerospace University, 2014 (in Chinese).
Outlines

/