ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress of solid rocket scramjet combustion technology
Received date: 2023-04-03
Revised date: 2023-04-27
Accepted date: 2023-05-22
Online published: 2023-05-29
Supported by
National Natural Science Foundation of China(52006240);Natural Science Foundation of Hunan Province(2021JJ30775);Scientific Research Program of National University of Defense Technology(ZK20-28)
The solid rocket scramjet offers a number of advantages, such as stable flame, high mixing and combustion efficiency, and convenient gas flow regulation. Its potential to become the preferred power source for hypersonic missiles in the future makes it a technology of significant practical value. This paper provides a comprehensive review of research progress in combustion organization techniques for solid rocket scramjets, primarily focusing on the combustion technology of fuel-rich solid propellant, fuel-rich gas injection, and combustion chamber enhancement technology. In addition, this paper reviews the latest developments in the basic science issues of solid rocket scramjet combustor, covering topics such as gas-solid two-phase transport in supersonic flow, and boron particle ignition and combustion. Finally, this paper summarizes the combustion technology of solid rocket scramjet and proposes its future development direction.
Zhixun XIA , Yunchao FENG , Likun MA , Binbin CHEN , Chaolong LI , Pengnian YANG , Yandong LIU , Ying QU , Kangchun ZHAO , Libei ZHAO , Penghao REN . Research progress of solid rocket scramjet combustion technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528793 -528793 . DOI: 10.7527/S1000-6893.2023.28793
1 | 李潮隆. 固体火箭超燃冲压发动机燃烧组织技术研究[D]. 长沙: 国防科技大学, 2019. |
LI C L. Research on combustion organization technology of solid rocket scramjet[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
2 | 吕仲, 夏智勋, 刘冰, 等. 采用固体燃料的超燃冲压发动机研究进展[J]. 航空动力学报, 2016, 31(8): 1973-1984. |
LV Z, XIA Z X, LIU B, et al. Review of research on solid fuel scramjet engine[J]. Journal of Aerospace Power, 2016, 31(8): 1973-1984 (in Chinese). | |
3 | 胡松启. 含硼富燃推进剂一次燃烧研究[D]. 西安: 西北工业大学, 2004. |
HU S Q. Study on primary combustion of boron-based fuel-rich propellant[D]. Xi’an: Northwestern Polytechnical University, 2004 (in Chinese). | |
4 | 王英红, 李葆萱, 张晓宏, 等. 含硼富燃料推进剂低压燃烧模型[J]. 固体火箭技术, 2006(1): 39-42, 59. |
WANG Y H, LI B X, ZHANG X H, et al. Combustion model of boron-based fuel-rich propellant at low pressure[J]. Journal of Solid Rocket Technology, 2006(1): 39-42, 59 (in Chinese). | |
5 | 高东磊. 含硼富燃料推进剂一次燃烧性能研究[D]. 长沙: 国防科学技术大学, 2009. |
GAO D L. Study on primary combustion characteristics of boron-based fuel-rich propellant[D]. Changsha: National University of Defense Technology, 2009 (in Chinese). | |
6 | LIU L L, HE G Q, WANG Y H. Effect of oxidizer on the combustion performance of boron-based fuel-rich propellant[J]. Journal of Propulsion and Power, 2014, 30(2): 285-289. |
7 | PORYAZOV V A, MOISEEVA K M, KRAINOV A Y, et al. Numerical simulation of combustion of a composite solid propellant containing boron powder[J]. Combustion, Explosion, and Shock Waves, 2022, 58(2): 197-205. |
8 | WU W E, ZHU Z M. Calculation for primary combustion characteristics of boron-based fuel-rich propellant based on BP neural network[J]. Journal of Combustion, 2012, 2012: 1-6. |
9 | LIU L L, HE G Q, WANG Y H, et al. Factors affecting the primary combustion products of boron-based fuel-rich propellants[J]. Journal of Propulsion and Power, 2016, 33(2): 333-337. |
10 | 梁导伦. 硼基贫氧固体推进剂一次燃烧产物体系能量释放特性研究[D]. 杭州: 浙江大学, 2018. |
LIANG D L. Study on energy release properties of boron based fuel rich solid propellants primary combustion products systems[D]. Hangzhou: Zhejiang University, 2018 (in Chinese). | |
11 | 刘元敏, 张研, 刘林林, 等. RDX对含硼富燃料推进剂一次燃烧产物组分影响的计算研究[J]. 火炸药学报, 2017, 40(1): 81-84, 90. |
LIU Y M, ZHANG Y, LIU L L, et al. Calculation study on effect of RDX on the composition of primary combustion products for boron-based fuel-rich propellants[J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 81-84, 90 (in Chinese). | |
12 | 郑剑, 李学军, 庞爱民, 等. 国内外含硼富燃料推进剂燃烧性能研究现状[J]. 飞航导弹, 2003(4): 50-53, 57. |
ZHENG J, LI X J, PANG A M, et al. Research status of combustion performance of boron-containing fuel-rich propellant at home and abroad[J]. Winged Missiles Journal, 2003(4): 50-53, 57 (in Chinese). | |
13 | 张琼方, 曹付齐, 孙振华. 含硼富燃料推进剂燃烧性能的研究进展[J]. 含能材料, 2007, 15(4): 436-440. |
ZHANG Q F, CAO F Q, SUN Z H. Progress in combustion characteristics of boron-based fuel-rich propellant[J]. Chinese Journal of Energetic Materials, 2007, 15(4): 436-440 (in Chinese). | |
14 | 郝利峰, 张丽, 唐时敏, 等. 含硼富燃料推进剂的技术现状与发展趋势[J]. 化学推进剂与高分子材料, 2015, 13(3): 1-7, 20. |
HAO L F, ZHANG L, TANG S M, et al. Technology status and development trends of boron-containing fuel-rich propellants[J]. Chemical Propellants & Polymeric Materials, 2015, 13(3): 1-7, 20 (in Chinese). | |
15 | LIU T K, SHYU I M, HSIA Y S. Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants[J]. Journal of Propulsion and Power, 1996, 12(1): 26-33. |
16 | 陈冰虹, 刘建忠, 梁导伦, 等. 硼颗粒的包覆机理及工艺研究进展[J]. 火炸药学报, 2016, 39(5): 13-21. |
CHEN B H, LIU J Z, LIANG D L, et al. Research progress in coating mechanism and technology of boron particle[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5): 13-21 (in Chinese). | |
17 | KUO K K, PEIN R. Combustion of boron-based solid propellants and solid fuels[M]. Boca Raton: Begell House/CRC Press, 1993: 524. |
18 | 樊学忠, 庞维强, 胥会祥, 等. 球形团聚硼颗粒制备工艺的优化[J]. 火炸药学报, 2010, 33(1): 64-66, 74. |
FAN X Z, PANG W Q, XU H X, et al. Optimization of preparation process for spherical agglomerated boron particles[J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 64-66, 74 (in Chinese). | |
19 | HSIA H T. Air-augmented combustion of boron and boron-metal alloy: AFRPL-TR-71-80[R]. Arlington: AFRPL, 1971. |
20 | LEIBU I, ROZENBAND V, GANY A. The boron/titanium composite particle - A novel approach for ignition enhancement[C]∥ Proceedings of the 31st Joint Propulsion Conference and Exhibit. Reston: AIAA, 1995. |
21 | SCHOENITZ M, DREIZIN E L, SHTESSEL E. Constant volume explosions of aerosols of metallic mechanical alloys and powder blends[J]. Journal of Propulsion and Power, 2003, 19(3): 405-412. |
22 | 郭洋. 硼化合物和包覆硼的制备、燃烧性能及应用研究[D]. 长沙: 国防科学技术大学, 2014. |
GUO Y. Study on preparation, combustion property and application of borides and coated boron[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
23 | 王国栋, 刘玉存, 荆苏明, 等. 硼基含能化合物制备方法研究进展[J]. 含能材料, 2020, 28(7): 707-716. |
WANG G D, LIU Y C, JING S M, et al. Review on preparation of boron-based energetic compounds[J]. Chinese Journal of Energetic Materials, 2020, 28(7): 707-716 (in Chinese). | |
24 | LV Z, XIA Z X, LIU B, et al. Preliminary experimental study on solid-fuel rocket scramjet combustor[J]. Journal of Zhejiang University-SCIENCE A, 2017, 18(2): 106-112. |
25 | LIU Y, GAO Y G, SHI L, et al. Preliminary experimental study on solid rocket fuel gas scramjet[J]. Acta Astronautica, 2018, 153: 146-153. |
26 | 朱韶华, 梁磊, 秦飞, 等. 固体火箭超燃冲压发动机燃烧性能影响因素研究[J]. 推进技术, 2021, 42(3): 638-646. |
ZHU S H, LIANG L, QIN F, et al. Influence factors of combustion performance of solid rocket scramjet engine[J]. Journal of Propulsion Technology, 2021, 42(3): 638-646 (in Chinese). | |
27 | SCHADOW K, WILSON K, LEE M. Enhancement of mixing in ducted rockets with elliptic gas-generator nozzles[C]∥ 20th Joint Propulsion Conference. Reston: AIAA, 1984. |
28 | 刘仔. 固体火箭超燃冲压发动机掺混燃烧及影响规律研究[D]. 西安: 航天动力技术研究院, 2017. |
LIU Z. Study on mixed combustion and its influence law of solid rocket scramjet [D]. Xi'an: Academy of Aerospace Solid Propulsion Technology, 2017 (in Chinese). | |
29 | YANG P N, XIA Z X, MA L K, et al. Experimental study on the influence of the injection structure on solid scramjet performance[J]. Acta Astronautica, 2021, 188: 229-238. |
30 | 黄礼铿, 胡广军, 胡豹, 等. 固体火箭超燃冲压发动机燃烧试验研究[J]. 固体火箭技术, 2020, 43(5): 549-553. |
HUANG L K, HU G J, HU B, et al. Experiment on combustion of solid rocket scramjet[J]. Journal of Solid Rocket Technology, 2020, 43(5): 549-553 (in Chinese). | |
31 | VIGOT C, BARDELLE L, NADAUD L. Improvement of boron combustion in a solid-fuel ramrocket[C]∥ Proceedings of the 22nd Joint Propulsion Conference. Reston: AIAA, 1986. |
32 | LIU J, WANG N F, WANG J, et al. Optimizing combustion performance in a solid rocket scramjet engine[J]. Aerospace Science and Technology, 2020, 99: 105560. |
33 | 马立坤, 李潮隆, 夏智勋, 等. 带凹腔火焰稳定器的固体火箭超燃冲压发动机燃烧室试验研究[J]. 推进技术, 2021, 42(2): 319-326. |
MA L K, LI C L, XIA Z X, et al. Experimental investigation of solid rocket scramjet combustor with cavity flameholder[J]. Journal of Propulsion Technology, 2021, 42(2): 319-326 (in Chinese). | |
34 | YANG P N, XIA Z X, MA L K, et al. Influence of the multicavity shape on the solid scramjet[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-14. |
35 | 杨鹏年, 夏智勋, 陈斌斌, 等. 凹腔对固体超燃冲压发动机燃烧性能影响研究[J]. 推进技术, 2023, 44(4): 106-118. |
YANG P N, XIA Z X, CHEN B B, et al. Effects of cavity on solid scramjet combustion performance[J]. Journal of Propulsion Technology, 2023, 44(4): 106-118 (in Chinese). | |
36 | 李轩, 马利锋, 赵永涛, 等. 固体火箭超燃冲压发动机性能数值模拟研究[J]. 弹箭与制导学报, 2014, 34(1): 104-107, 161. |
LI X, MA L F, ZHAO Y T, et al. Numerical investigation on combustion performance, solid rocket scramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(1): 104-107, 161 (in Chinese). | |
37 | 陈端毓, 田维平, 董新刚, 等. 固体火箭超燃冲压发动机点火燃烧过程实验研究[J]. 推进技术, (2022-12-30)[2023-03-20]. . |
CHEN D Y, TIAN W P, DONG X G, et al. Experimental Study on Ignition and Combustion Process of Solid Rocket Scramjet[J]. Journal of Propulsion Technology, (2022-12-30)[2023-03-20]. (in Chinese). | |
38 | LIU Y, GAO Y G, CHAI Z X, et al. Mixing and heat release characteristics in the combustor of solid-fuel rocket scramjet based on DES[J]. Aerospace Science and Technology, 2019, 94: 105391. |
39 | GAO Y G, LIU Y, CHAI Z, et al. Influence of lobe geometry on mixing and heat release characteristics of solid fuel rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 212-229. |
40 | 高勇刚, 刘洋, 余晓京, 等. 固体火箭燃气超燃冲压发动机燃烧组织技术研究[J]. 推进技术, 2019, 40(1): 140-150. |
GAO Y G, LIU Y, YU X J, et al. Research on combustion organization technology of the solid rocket fuel gas scramjet[J]. Journal of Propulsion Technology, 2019, 40(1): 140-150 (in Chinese). | |
41 | LI C L, ZHAO X, XIA Z X, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164: 174-183. |
42 | LI C L, XIA Z X, MA L K, et al. Experimental and numerical study of solid rocket scramjet combustor equipped with combined cavity and strut device[J]. Acta Astronautica, 2019, 162: 145-154. |
43 | NILSSON T, ZHONG S, FUREBY C. LES of H2-air jet combustion in high enthalpy supersonic crossflow[J]. Physics of Fluids, 2021, 33(3): 035133. |
44 | KELSO R M, SMITS A J. Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet[J]. Physics of Fluids, 1995, 7(1): 153-158. |
45 | CAMPOLO M, SALVETTI M V, SOLDATI A. Mechanisms for microparticle dispersion in a jet in crossflow[J]. AIChE Journal, 2005, 51(1): 28-43. |
46 | AGATI G, BORELLO D, CAMERLENGO G, et al. DNS of an oblique jet in a particle-laden crossflow: Study of solid phase preferential concentration and particle-wall interaction[J]. Flow, Turbulence and Combustion, 2020, 105(2): 517-535. |
47 | PARK J, PARK H. Particle dispersion induced by vortical interactions in a particle-laden upward jet with a partial crossflow[J]. Journal of Fluid Mechanics, 2021, 915: A5. |
48 | LI C L, XIA Z X, MA L K, et al. Experimental investigation on the ignition delay of fuel-rich mixture in solid rocket scramjet[J]. Acta Astronautica, 2022, 190: 112-117. |
49 | XIAO W, JIN T, LUO K, et al. Eulerian-Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer[J]. Journal of Fluid Mechanics, 2020, 903: A19. |
50 | LUO S B, FENG Y B, SONG J W, et al. Powder fuel transport process and mixing characteristics in cavity-based supersonic combustor with different injection schemes[J]. Aerospace Science and Technology, 2022, 128: 107798. |
51 | ZHAO K C, XIA Z X, MA L K, et al. Large-eddy simulation of gas-particle two-phase jet into a supersonic crossflow[J]. Physics of Fluids, 2023, 35(2): 023310. |
52 | BASSET A B. A treatise on hydrodynamics, with numerous examples[M]. Cambridge: Deighton, Bell and Company, 1888: 2. |
53 | PARMAR M, HASELBACHER A, BALACHANDAR S. Generalized basset-boussinesq-oseen equation for unsteady forces on a sphere in a compressible flow[J]. Physical Review Letters, 2011, 106(8): 084501. |
54 | BAILEY A, HIATT J. Sphere drag coefficients for a broad range of Mach and Reynolds numbers[J]. AIAA Journal, 1972, 10(11): 1436-1440. |
55 | LOTH E. Compressibility and rarefaction effects on drag of a spherical particle[J]. AIAA Journal, 2008, 46(9): 2219-2228. |
56 | LING Y, PARMAR M, BALACHANDAR S. A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows[J]. International Journal of Multiphase Flow, 2013, 57: 102-114. |
57 | SCHILLER L. A drag coefficient correlation[J]. V.D.I. Zeitung, 1935, 77: 318-320. |
58 | DAVULURI R S C, BAILEY S C C, TAGAVI K A, et al. A drag coefficient model for Lagrangian particle dynamics relevant to high-speed flows[J]. International Journal of Heat and Fluid Flow, 2021, 87: 108706. |
59 | RIAHI H, MELDI M, FAVIER J, et al. A pressure-corrected immersed boundary method for the numerical simulation of compressible flows[J]. Journal of Computational Physics, 2018, 374: 361-383. |
60 | MELIGA P, SIPP D, CHOMAZ J M. Effect of compressibility on the global stability of axisymmetric wake flows[J]. Journal of Fluid Mechanics, 2010, 660: 499-526. |
61 | NAGATA T, NONOMURA T, TAKAHASHI S, et al. Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation[J]. Physics of Fluids, 2016, 28(5): 056101. |
62 | SANSICA A, ROBINET J C, ALIZARD F, et al. Three-dimensional instability of a flow past a sphere: Mach evolution of the regular and Hopfbifurcations[J]. Journal of Fluid Mechanics, 2018, 855: 1088-1115. |
63 | MACEK A, SEMPLE J. Combustion of boron particles at atmospheric pressure[C]∥ Proceedings of the 5th Propulsion Joint Specialist. Reston: AIAA, 1969. |
64 | UDA R T. A shock tube study of the ignition limit of boron particle[D]. Arlington: Air Force Institute of Technology, 1968. |
65 | KRIER H, BURTON R L, SPALDING M J, et al. Ignition dynamics of boron particles in a shock tube[J]. Journal of Propulsion and Power, 1998, 14(2): 166-172. |
66 | MA?EK A, SEMPLE J M. Combustion of boron particles at elevated pressures[J]. Symposium (International) on Combustion, 1971, 13(1): 859-868. |
67 | GUREVICH M A, KIR'YANOV I M, OZEROV E S. Combustion of individual boron particles[J]. Combustion, Explosion and Shock Waves, 1969, 5(2): 150-153. |
68 | KRIER H, BURTON R L, PIRMAN S R, et al. Shock initiation of crystalline boron in oxygen and fluorine compounds[J]. Journal of Propulsion and Power, 1996, 12(4): 672-679. |
69 | 方传波. 固体火箭冲压发动机内硼颗粒着火燃烧过程研究[D]. 长沙: 国防科学技术大学, 2014. |
FANG C B. Study of ignition and combustion process of boron particles in ducted rockets[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
70 | LIANG D L, LIU J Z, ZHOU Y N, et al. Ignition and combustion characteristics of amorphous boron and coated boron particles in oxygen jet[J]. Combustion and Flame, 2017, 185: 292-300. |
71 | LIU P J, LIU L L, HE G Q. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(3): 1587-1593. |
72 | YANOVSKII L S, RAZNOSCHIKOV V V, AVERKOV I S, et al. Evaluation of the performance of some metals and nonmetals in solid propellants for rocket-ramjet engines[J]. Combustion, Explosion, and Shock Waves, 2020, 56(1): 71-82. |
73 | FOELSCHE R O, BURTON R L, KRIER H. Boron particle ignition and combustion at 30-150 atm[J]. Combustion and Flame, 1999, 117(1-2): 32-58. |
74 | YOUNG G, BALAR R, KRASEL M, et al. Effect of nanoparticle additives in airbreathing combustion[C]∥ Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. |
75 | KALPAKLI B, ACAR E B, ULAS A. Improved combustion model of boron particles for ducted rocket combustion chambers[J]. Combustion and Flame, 2017, 179: 267-279. |
76 | 敖文. 硼颗粒点火燃烧机理研究[D]. 杭州: 浙江大学, 2014. |
AO W. Study on ignition and combustion mechanism of boron particles[D]. Hangzhou: Zhejiang University, 2014 (in Chinese). | |
77 | YOSHIDA T, YUASA S. Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream[J]. Proceedings of the Combustion Institute, 2000, 28(2): 2735-2741. |
78 | YUASA S, YOSHIDA T, KAWASHIMA M, et al. Effects of pressure and oxygen concentration on ignition and combustion of boron in oxygen/nitrogen mixture streams[J]. Combustion and Flame, 1998, 113(3): 380-387. |
79 | KING M K. Boron ignition and combustion in air-augmented rocket afterburners[J]. Combustion Science and Technology, 1972, 5(1): 155-164. |
80 | LI S C, WILLIAMS F A. Ignition and combustion of boron in wet and dry atmospheres[J]. Symposium (International) on Combustion, 1991, 23(1): 1147-1154. |
81 | YEH C L, KUO K K. Ignition and combustion of boron particles[J]. Progress in Energy and Combustion Science, 1996, 22(6): 511-541. |
82 | AO W, ZHOU J H, LIU J Z, et al. Kinetic model of single boron particle ignition based upon both oxygen and (BO)n diffusion mechanism[J]. Combustion, Explosion, and Shock Waves, 2014, 50(3): 262-271. |
83 | 敖文, 权恩. 硼颗粒点火燃烧模型求解及影响因素分析[J]. 推进技术, 2017, 38(5): 1180-1187. |
AO W, QUAN E. Numerical model solution and analysis of effect factors of boron ignition and combustion behaviors[J]. Journal of Propulsion Technology, 2017, 38(5): 1180-1187 (in Chinese). | |
84 | LIANG D L, LIU J Z, ZHOU Y N, et al. Ignition de-lay kinetic model of boron particle based on bidirec-tional diffusion mechanism[J]. Aerospace Science and Technology, 2018, 73: 78-84. |
85 | HUSSMANN B, PFITZNER M. Extended combustion model for single boron particles-Part I: Theory[J]. Combustion and Flame, 2010, 157(4): 803-821. |
86 | HUSSMANN B, PFITZNER M. Extended combustion model for single boron particles - Part II: Validation[J]. Combustion and Flame, 2010, 157(4): 822-833. |
87 | 胡建新. 含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D]. 长沙: 国防科学技术大学, 2006. |
HU J X. Research on the secondary combustion chamber operation process of boron-based propellant ducted rockets[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). | |
88 | 胡建新, 夏智勋, 王德全. 固冲发动机补燃室内强迫对流条件下硼颗粒燃烧速率研究[J]. 固体火箭技术, 2007, 30(1): 21-25. |
HU J X, XIA Z X, WANG D Q. Study on burning rate of boron particles in secondary chamber of ducted rocket under forced convection conditions[J]. Journal of Solid Rocket Technology, 2007, 30(1): 21-25 (in Chinese). | |
89 | 方传波, 夏智勋, 胡建新, 等. 硼颗粒聚团着火过程研究[J]. 航空学报, 2012, 33(12): 2153-2160. |
FANG C B, XIA Z X, HU J X, et al. Study of ignition process of boron particle agglomeration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2153-2160 (in Chinese). | |
90 | 胡旭. 硼颗粒群燃烧机理及模型研究[D]. 西北工业大学, 2020. |
HU X. Investigation on combustion mechanism and model of boron particle clouds[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese). |
/
〈 |
|
〉 |