Fluid Mechanics and Flight Mechanics

Simulation and optimization of thermal comfort of fighter cockpit environment

  • Zhongqi LIU ,
  • Xuyang HU ,
  • Haining LUO ,
  • Xiaoming WANG ,
  • Sujun DONG
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
    2.AVIC Chengdu Aircraft Design and Research Institute,Chengdu 610091,China
E-mail: dsj@buaa.edu.cn

Received date: 2023-04-23

  Revised date: 2023-05-14

  Accepted date: 2023-05-22

  Online published: 2023-05-24

Abstract

The thermal comfort of the fighter cockpit environment is an important factor to ensure the pilot man-machine efficiency and the best combat performance of the fighter. However, the commonly used PMV-PPD human thermal comfort evaluation index cannot be applied to the extremely uneven flow field and temperature field environment in the cockpit, and the thermal comfort of the cockpit environment lacks effective optimization design means. This study first uses STAR-CCM+ and TAITherm software to realize the joint simulation function of air distribution in the cockpit, Fiala human physiological model and Berkeley thermal comfort evaluation model, and then optimizes the human thermal comfort and temperature non-uniformity coefficient. Genetic Algorithm (GA) is used to optimize the flow distribution of multiple air outlets in the cockpit. Compared with the traditional decoupling method, the joint simulation method can effectively improve the calculation accuracy of the skin temperature and thermal comfort of the pilot in the cockpit. Compared with the initial design plan, the temperature non-uniformity coefficient around the human body has improved by 16% after optimization, and the overall thermal comfort has increased by 0.285, accounting for 14% of the quantization scale ladder. Meanwhile, most of the local thermal sensation and thermal comfort of the optimization plan have been improved to varying degrees. Among them, those of the head and neck has improved the most, with the thermal sensation and thermal comfort of the neck increased by 0.55 and 0.781, respectively, accounting for 55% and 39% of the quantization scale ladder, respectively.

Cite this article

Zhongqi LIU , Xuyang HU , Haining LUO , Xiaoming WANG , Sujun DONG . Simulation and optimization of thermal comfort of fighter cockpit environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(7) : 128919 -128919 . DOI: 10.7527/S1000-6893.2023.28919

References

1 ZHOU B Y, DING L, CHEN B, et al. Physiological characteristics and operational performance of pilots in the high temperature and humidity fighter cockpit environments[J]. Sensors202121(17): 5798.
2 SCHMINDER J, G?RDHAGEN R. A generic simulation model for prediction of thermal conditions and human performance in cockpits[J]. Building and Environment2018143: 120-129.
3 FAN J L, ZHOU Q Y. A review about thermal comfort in aircraft[J]. Journal of Thermal Science201928(2): 169-183.
4 FANGER P O. Thermal comfort[M]. New York: McGraw-Hill, 1972:1-15.
5 SHI X D, CHAO D, ZHANG Y, et al. The study of air supply ways effects on the aircraft cabin thermal environment[C]∥ WANG R, CHEN Z, ZHANG W, et al. Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Singapore: Springer, 2020: 123-131.
6 YAN Y H, LI X R, TAO Y, et al. Numerical investigation of pilots’ micro-environment in an airliner cockpit[J]. Building and Environment2022217: 109043.
7 Kuznetz LH. Analysis of the effects of free stream gas velocity upon astronaut thermal comfort: NASA TM-79823[R]. Washington, D.C.: NASA, 1978.
8 林国华, 袁修干, 杨燕生. 人机环境系统中CFD的研究[J]. 航空学报199920(): 22-24.
  LIN G H, YUAN X G, YANG Y S. CFD applications in the MMES industry[J]. Acta Aeronautica et Astronautica Sinica199920(Sup 1): 22-24 (in Chinese).
9 沈海峰, 袁修干. 歼击机座舱空气流动和传热的数值模拟与实验[J]. 航空学报200930(1): 30-39.
  SHEN H F, YUAN X G. Numerical simulation and experiment on air flow and heat transfer in fighter plane cockpit[J]. Acta Aeronautica et Astronautica Sinica200930(1): 30-39 (in Chinese).
10 XUE Y, ZHAI Z J, CHEN Q Y. Inverse prediction and optimization of flow control conditions for confined spaces using a CFD-based genetic algorithm[J]. Building and Environment201364: 77-84.
11 PANG L P, LI P, BAI L Z, et al. Optimization of air distribution mode coupled interior design for civil aircraft cabin[J]. Building and Environment2018134: 131-145.
12 LIU W, DUAN R, CHEN C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method[J]. Energy and Buildings2015104: 147-155.
13 宁献文, 张利珍, 王浚. 旅客机座舱热舒适动态特性仿真[J]. 航空学报200627(4): 551-555.
  NING X W, ZHANG L Z, WANG J. Simulation of dynamic characteristics for airliner cabin thermal comfort[J]. Acta Aeronautica et Astronautica Sinica200627(4): 551-555 (in Chinese).
14 孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报201536(3): 819-826.
  SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica201536(3): 819-826 (in Chinese).
15 林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报201738(8): 121089.
  LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica201738(8): 121089 (in Chinese).
16 ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: Local sensation of individual body parts[J]. Building and Environment201045(2): 380-388.
17 ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part II: local comfort of individual body parts[J]. Building and Environment201045(2): 389-398.
18 ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort[J]. Building and Environment201045(2): 399-410.
19 ZHOU X J, LAI D Y, CHEN Q Y. Thermal sensation model for driver in a passenger car with changing solar radiation[J]. Building and Environment2020183: 107219.
20 LI W J, CHEN J Q, LAN F C, et al. Numerical projection on occupant thermal comfort via dynamic responses to human thermoregulation[J]. International Journal of Automotive Technology202223(1): 193-203.
21 VOELKER C, ALSAAD H. Simulating the human body’s microclimate using automatic coupling of CFD and an advanced thermoregulation model[J]. Indoor Air201828(3): 415-425.
22 FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. International Journal of Biometeorology200145(3): 143-159.
23 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 62-84.
  SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2004: 62-84 (in Chinese).
24 PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948[J]. Journal of Applied Physiology199885(1): 5-34.
25 马越崎. 某型飞机空调性能优化分析及改进[J]. 流体测量与控制20223(2): 41-45.
  MA Y Q. Improve and research on the air conditioner of certain aircraft[J]. Fluid Measurement & Control20223(2): 41-45 (in Chinese).
Outlines

/