ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Safety experimental demonstration of propellant parallel loading for LOX/kerosene rocket
Received date: 2023-03-28
Revised date: 2023-04-11
Accepted date: 2023-05-04
Online published: 2023-05-18
Supported by
Provincial and Ministerial Level Project
Liquid Oxygen (LOX)/kerosene is currently the mainstream liquid rocket propellant combination because of its high thrust, high density specific impulse, and low cost. However, the propellant serial loading procedure is still widely used at present, with the shortcomings such as tediously long countdown timeline, and significant temperature rise of kerosene after loading. For engineering application of LOX/kerosene parallel loading, safety experimental demonstration was conducted iteratively through oxygen/kerosene sealing experiments, LOX/kerosene leakage experiments, and safety boundary experiments. The results show that the safety indicators of LOX/kerosene parallel loading are that the kerosene vapor concentration is less than 1.80%, which can be achieved by controlling the kerosene temperature to be less than 62.2 ℃ or the vapor temperature to be less than 41.8 ℃. Under the typical condition of leakage at the launch complex, even under extreme environmental conditions such as 40 ℃ temperature and airtightness, the maximum concentration of kerosene vapor is only 0.53%, hence LOX/kerosene parallel loading is still absolutely safe. The research results have been applied in the launch service of a medium LOX/kerosene launch vehicle since 2022, decreasing the propellant loading procedure by 64% and the countdown procedure by 33%.
Zheng YAN , Bing BO , Tianpei LUO , Liangping ZHU , Xiangwei CHANG . Safety experimental demonstration of propellant parallel loading for LOX/kerosene rocket[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(15) : 528750 -528750 . DOI: 10.7527/S1000-6893.2023.28750
1 | ROCKER M, NESMAN T E, HULKA J R, et al. A review of LOX/kerosene combustion instability in American and Russian combustion devices in application to next-generation launch technology[C]∥ JANNAF 52nd Propulsion Meeting, 2003. |
2 | 任春波, 沈兆欣, 马晨菲, 等. 全二维气相色谱用于航天煤油组成的研究[J]. 宇航计测技术, 2018, 38(4): 90-94. |
REN C B, SHEN Z X, MA C F, et al. Research of components in rocket kerosene by comprehensive two-dimensional gas chromatography[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(4): 90-94 (in Chinese). | |
3 | 张光友, 彭清涛, 李珍, 等. 气相色谱-场电离-高分辨飞行时间质谱联用法测定火箭煤油的烃类组成[J]. 理化检验(化学分册), 2014, 50(2): 210-213. |
ZHANG G Y, PENG Q T, LI Z, et al. Determination of composition of hydrocarbons in rocket kerosene by hyphenation of GC with field ionization-high resolution time of flight-mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(2): 210-213 (in Chinese). | |
4 | 杨宝娥, 梁克明. 俄罗斯煤油与RP-1煤油对比试验研究[J]. 火箭推进, 1996, 22(5): 22-31. |
YANG B E, LIANG K M. Comparative experimental study on Russian kerosene and RP-1 kerosene[J]. Journal of Rocket Propulsion, 1996, 22(5): 22-31 (in Chinese). | |
5 | ROTH E M. Space-cabin atmospheres part II—Fire and blast hazards: NASA-SP-48[R]. Washington, D.C.: NASA, 1964. |
6 | 陈莹. 工业火灾与爆炸事故预防[M]. 北京: 化学工业出版社, 2010: 65-68. |
CHEN Y. Prevention of industrial fire and explosion accidents[M]. Beijing: Chemical Industry Press, 2010: 65-68 (in Chinese). | |
7 | Space Exploration Technologies Corp. Falcon users guide[M]. Hawthorne: Space Exploration Technologies Corp., 2019: 59. |
8 | NASA. STS-1 first space shuttle mission press kit[M]. Washington, D.C.: NASA, 1981: 11-12. |
9 | United Launch Alliance. Atlas V users guide[M]. V11. Littleton: United Launch Alliance, 2010: 343-345. |
10 | NASA. Countdown 101: Delta IV[EB/OL]. Washington, D.C.: NASA, (2017-08-07) [2023-05-04] . |
11 | EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903—2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107. |
12 | 张光友, 彭清涛, 盛涛. 气相色谱-质谱法分析火箭煤油组成的再研究及火箭煤油蒸汽的组成分析[J]. 导弹与航天运载技术, 2011(4): 59-62. |
ZHANG G Y, PENG Q T, SHENG T. GC-MS determination of components in rocket kerosene and rocket kerosene vapour[J]. Missiles and Space Vehicles, 2011(4): 59-62 (in Chinese). | |
13 | 骆宇霆. 富氧气氛下的煤油闪点实验研究[D]. 合肥: 中国科学技术大学, 2021: 15-20. |
LUO Y T. Experimental investigation of kerosene flash point under oxygen-rich atmosphere[D]. Hefei: University of Science and Technology of China, 2021: 15-20 (in Chinese). | |
14 | 黄智勇, 夏本立, 丛继信, 等. 航天发射场火箭煤油泄漏事故后果分析[J]. 导弹与航天运载技术, 2010(6): 45-49, 52. |
HUANG Z Y, XIA B L, CONG J X, et al. Analysis on launch vehicle kerosene leaking accidents at the space launching sites[J]. Missiles and Space Vehicles, 2010(6): 45-49, 52 (in Chinese). | |
15 | FARBER E A, KLEMENT F W, BONZON C F. Prediction of explosive yield and other characteristics of liquid propellant rocket explosions: NASA-CR-100782[R]. Washington, D.C.: NASA, 1968. |
16 | GAYLE J B, BLAKEWOOD C H, BRANSFORD J W, et al. Preliminary investigation of blast hazards of RP-1/LOX and LH2/LOX propellant combinations: NASA-TM-X-53240[R]. Washington, D.C.: NASA, 1965. |
17 | RICHARDSON E, BANGHAM M, BLACKWOOD J, et al. An overview of the launch vehicle blast environments development efforts[C]∥ JANNAF Combustion Systems Joint Subcommittee Meeting, 2014. |
18 | SHEBEKO Y N, FAN W, BOLODIAN I A, et al. An analytical evaluation of flammability limits of gaseous mixtures of combustible-oxidizer-diluent[J]. Fire Safety Journal, 2002, 37(6): 549-568. |
19 | 毛浩清. RP-3航空煤油燃爆特性实验研究[D]. 南京: 南京理工大学, 2018: 44-45. |
MAO H Q. Experimental study on the deflagration characteristics of RP-3 aviation kerosene[D]. Nanjing: Nanjing University of Science and Technology, 2018: 44-45 (in Chinese). | |
20 | 莫胜钧. 小型航空点燃式重油活塞发动机点火及火焰传播特性的模拟研究[D]. 北京: 北京交通大学, 2012: 71-76. |
MO S J. Study on the ignition and flame propagation property of light-weight, spark ignition, heavy oil aeroengine[D]. Beijing: Beijing Jiaotong University, 2012: 71-76 (in Chinese). | |
21 | 毕延飞. 航空重油直喷发动机冷起动性能优化研究[D]. 天津: 天津大学, 2016: 34-36. |
BI Y F. Study on optimization of cold start performance of aviation heavy oil direct injection engine[D]. Tianjin: Tianjin University, 2016: 34-36 (in Chinese). |
/
〈 |
|
〉 |