ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Broadband noise fast evaluation method and its application in three dimensional design stage of fan
Received date: 2023-02-24
Revised date: 2023-03-27
Accepted date: 2023-04-24
Online published: 2023-05-12
Supported by
National Science and Technology Major Project (2017-Ⅱ-0008-0022);National Natural Science Foundation of China(51776174);Aviation Engine and Gas Turbine Basic Science Center Project (P2022-A-Ⅱ-003-001, P2022-B-Ⅱ-011-001)
In this study, a fast broadband noise prediction method was developed for the three-dimensional design stage of fans to predict the fan rotor-stator interaction broadband noise. The main purpose is to quickly obtain the broadband noise spectrum and characteristics after obtaining the aerodynamic characteristics in the fan three-dimensional design stage. The three-dimensional stage broadband noise model of the fan in this paper is a semi-analytical model based on the steady Reynolds Average Navier-Stokes equation (RANS), which extracts the upstream blade wake turbulence information of the sound source through the steady Computational Fluid Dynamics (CFD) calculation results, and then couples the turbulence information with the analytical model to quickly predict the fan broadband noise level. In this paper, the established fast broadband noise prediction model is firstly introduced, followed by verification of the analytical method part of the broadband noise model by the experimental data of an annular cascade acoustic experimental platform, and finally, the prediction and evaluation of aerodynamic performance and acoustic performance of a single-stage axial fan and a two-stage axial fan are conducted using the established fast broadband noise prediction model. The results show that the distribution of upstream turbulence of the sound source is directly related to the secondary flow of the upstream blades. In addition, the level of broadband noise increases significantly when the actual operating state of the fan deviates from the design operating state.
Hang TONG , Liangji ZHANG , Ruibiao GAO , Weijie CHEN , Weiyang QIAO . Broadband noise fast evaluation method and its application in three dimensional design stage of fan[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(24) : 128606 -128606 . DOI: 10.7527/S1000-6893.2023.28606
1 | ENGHARDT L. Aeroacoustics research in Europe: the CEAS-ASC report on 2017 highlights[J]. Journal of Sound and Vibration, 2019, 450: 175-198. |
2 | OWENS R. Energy efficient engine: Propulsion system-aircraft integration evaluation[R]. Washington, D.C.: NASA, 1979. |
3 | HUGHES C. NASA collaborative research on the ultra high bypass engine cycle and potential benefits for noise, performance, and emissions[R]. Washington, D.C.: NASA, 2013. |
4 | 王良锋. 风扇管道声模态识别的实验及数值模拟研究[D]. 西安: 西北工业大学, 2017. |
WANG L F. Experimental and numerical study on duct mode identification of fan noise[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
5 | 同航, 黎霖, 卯鲁秦, 等. 波浪前缘静子叶片对高速轴流风扇单音噪声的影响[J]. 航空学报, 2020, 41(10): 123565. |
TONG H, LI L, MAO L Q, et al. Tonal noise reduction of a high-speed single axial fan with wavy leading-edge stator[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123565 (in Chinese). | |
6 | 同航, 丁松, 向康深, 等. 分布式波浪前缘静子叶片对单级轴流风扇单音噪声影响的数值研究[J]. 推进技术, 2021, 42(10): 2237-2248. |
TONG H, DING S, XIANG K S, et al. Numerical study on tonal noise reduction of single axial fan with distributed wavy leading-edge stator[J]. Journal of Propulsion Technology, 2021, 42(10): 2237-2248 (in Chinese). | |
7 | TONG F, QIAO W Y, XU K B, et al. On the study of wavy leading-edge vanes to achieve low fan interaction noise[J]. Journal of Sound and Vibration, 2018, 419: 200-226. |
8 | POLACSEK C, CLAIR V, LE GARREC T, et al. Numerical predictions of turbulence/cascade-interaction noise using computational aeroacoustics with a stochastic model[J]. AIAA Journal, 2015, 53(12): 3551-3566. |
9 | TONG H, LI L, WANG L F, et al. Investigation of rotor-stator interaction broadband noise using a RANS-informed analytical method[J]. Chinese Journal of Aeronautics, 2021, 34(10): 53-66. |
10 | ENVIA E. Fan noise reduction: An overview[J]. International Journal of Aeroacoustics, 2002, 1(1): 43-64. |
11 | 燕群, 薛东文, 高翔, 等. 飞机短舱声衬声学性能实验技术[J]. 航空学报, 2022, 43(6): 526810. |
YAN Q, XUE D W, GAO X, et al. Acoustic performance experimental technology of aircraft nacelle acoustic liner[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526810 (in Chinese). | |
12 | PAUL T, HANS G, SEBASTIEN G. Numerical investigation for optimizing the aero-acoustical design of modern LP-turbines[C]. Vienna:The thirteenth International Congress on Sound and Vibration, 2006. |
13 | 乔渭阳, 王良锋, 段文华, 等. 航空发动机气动声学设计的理论、模型和方法[J]. 推进技术, 2021, 42(1): 10-38. |
QIAO W Y, WANG L F, DUAN W H, et al. Theory, model and method of aero-engine aeroacoustic design[J]. Journal of Propulsion Technology, 2021, 42(1): 10-38 (in Chinese). | |
14 | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 20-46. |
DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 20-46 (in Chinese). | |
15 | NESBITT E. Towards a quieter low pressure turbine: Design characteristics and prediction needs[J]. International Journal of Aeroacoustics, 2010, 10(1): 1-15. |
16 | 陈浩, 袁先旭, 毕林, 等. 基于RANS/LES混合方法的分离流动模拟[J]. 航空学报, 2020, 41(8): 123642. |
CHEN H, YUAN X X, BI L, et al. Simulation of separated flow based on RANS/LES hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123642 (in Chinese). | |
17 | 施方成, 高振勋, 田雨岩, 等. 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023, 44(2): 107-125. |
SHI F C, GAO Z X, TIAN Y Y, et al. Large eddy simulation of ideally expanded supersonic jet noise[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 107-125 (in Chinese). | |
18 | JU H B, MANI R, VYSOHLID M, et al. Investigation of fan-wake/outlet-guide-vane interaction broadband noise[J]. AIAA Journal, 2015, 53(12): 3534-3550. |
19 | JU H B. Effects of vane sweep on fan-wake/outlet-guide-vane interaction broadband noise: AIAA-2016-2948[R]. Reston: AIAA, 2016. |
20 | GUERIN S, KISSNER C A, KAJASA B, et al. Noise prediction of the ACAT1 fan with a RANS-informed analytical method: Success and challenge: AIAA-2019-2500[R]. Reston: AIAA, 2019. |
21 | SEARS W R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of the Aeronautical Sciences, 1941, 8(3): 104-108. |
22 | WOHLBRANDT A, HU N, GUéRIN S, et al. Analytical reconstruction of isotropic turbulence spectra based on the Gaussian transform[J]. Computers & Fluids, 2016, 132: 46-50. |
23 | POSSON H, ROGER M. Experimental validation of a cascade response function for fan broadband noise predictions[J]. AIAA Journal, 2011, 49(9): 1907-1918. |
24 | HANSON D, HORAN K. Turbulence/cascade interaction -Spectra of inflow, cascade response, and noise: AIAA-1998-2319[R]. Reston: AIAA, 1998. |
25 | 罗钜. 高性能风扇/压气机三维叶片气动设计与实验研究[D]. 南京: 南京航空航天大学, 2013. |
LUO J. Aerodynamic design of three-dimensional blades and experimental investigation for advanced fan/compressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
26 | 许坤波. 航空叶轮机管道声模态识别的数值及实验研究[D]. 西安: 西北工业大学, 2018. |
XU K B. Numerical and experimental study on turbo-machinery ducted mode identification[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). |
/
〈 |
|
〉 |