ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Fan rotor-stator interaction noise prediction based on URANS/TPP model
Received date: 2023-02-10
Revised date: 2023-03-01
Accepted date: 2023-04-24
Online published: 2023-05-06
Supported by
National Science and Technology Major Project (J2019-Ⅱ-0006-0026);Rising-Star Program of Shanghai Science and Technology Innovation Action Plan(23YF1452000)
In order to solve the problem of three-dimensional high-precision evaluation of fan noise, a numerical prediction method for the fan rotor-stator interaction noise is successfully proposed based on the Unsteady Reynolds Average Numerical Simulation (URANS) model and the Triple Plane Pressure (TPP) mode matching model. The feasibility of the URANS model for tone noise calculation in the duct is analyzed, and an error control criterion is established. On this basis, the URANS model is used to obtain the unsteady flow field of the fan, and the noise source is extracted using the TPP mode matching method to obtain the modal characteristics of the noise in the duct. Based on the experimental data of a large bypass ratio scaled fan, the accuracy of the model is compared and verified. The results show that the model is able to reliably predict the rotor-stator interaction noise. In addition, the design of low-noise blades based on the leaned and swept stator is carried out. The three-dimensional flow and acoustic fields are analyzed based on the proposed numerical model. The suppression mechanism of rotor-stator interaction noise sources is explored to support the design of low-noise fans.
Yunan CAI , Liang JI , Danwang LI , Ye XIA , Zhen NI . Fan rotor-stator interaction noise prediction based on URANS/TPP model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(22) : 128543 -128543 . DOI: 10.7527/S1000-6893.2023.28543
1 | ENVIA E. Fan noise reduction: An overview[J]. International Journal of Aeroacoustics, 2002, 1(1): 43-64. |
2 | OWENS R E. Energy efficient engine: Propulsion system-aircraft integration evaluation: NASA-CR-159488[R]. Washington, D.C.: NASA,1979. |
3 | NEISE W, ENGHARDT L. Technology approach to aero engine noise reduction[J]. Aerospace Science and Technology, 2003, 7(5): 352-363. |
4 | LIU X R, ZHAO D, GUAN D, et al. Development and progress in aeroacoustic noise reduction on turbofan aeroengines[J]. Progress in Aerospace Sciences, 2022, 130: 100796. |
5 | GOLDSTEIN A W, GLASER F W, COATS J W. Acoustic properties of a supersonic fan: NASA-TN-D-7096[R]. Washington, D.C.: NASA, 1973. |
6 | KAPLAN B, NICKE E, VOSS C. Design of a highly efficient low-noise fan for ultra-high bypass engines[C]∥ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006: 185-194. |
7 | 葛健, 柳阳威, 周振华, 等. 吸力面波系分布对风扇激波噪声的影响[J]. 工程热物理学报, 2018, 39(11): 2389-2397. |
GE J, LIU Y W, ZHOU Z H, et al. The influence of wave system on the suction surface on the buzz-saw noise of turbofan[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2389-2397 (in Chinese). | |
8 | ENVIA E, NALLASAMY M. Design selection and analysis of a swept and leaned stator concept[J]. Journal of Sound and Vibration, 1999, 228(4): 793-836. |
9 | WOODWARD R P, ELLIOTT D M, HUGHES C E, et al. Benefits of swept-and-leaned stators for fan noise reduction[J]. Journal of Aircraft, 2001, 38(6): 1130-1138. |
10 | KHALETSKIY Y D, POCHKIN Y S. Fan noise reduction of an aircraft engine by inclining the outlet guide vanes[J]. Acoustical Physics, 2015, 61: 101-108. |
11 | 张伟光, 王晓宇, 孙晓峰. 叶片弯掠组合设计对风扇气动噪声的被动控制[J]. 航空学报, 2017, 38(2): 167-175. |
ZHANG W G, WANG X Y, SUN X F. Passive control of fan noise by vane sweep and lean[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 167-175 (in Chinese). | |
12 | ZHANG W G, WANG X Y, JING X D, et al. Three-dimensional analysis of vane sweep effects on fan interaction noise[J]. Journal of Sound and Vibration, 2017, 391: 73-94. |
13 | LIANG G Q, WANG J C, CHEN Y, et al. The study of owl’s silent flight and noise reduction on fan vane with bionic structure[J]. Advances in Natural Science, 2010, 3: 192-198. |
14 | TONG F, QIAO W Y, XU K B, et al. On the study of wavy leading-edge vanes to achieve low fan interaction noise[J]. Journal of Sound and Vibration, 2018, 419: 200-226. |
15 | 乔渭阳, 仝帆, 陈伟杰, 等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121. |
QIAO W Y, TONG F, CHEN W J, et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica, 2018, 36(1): 98-121 (in Chinese). | |
16 | TSUCHIYA N, NAKAMURA Y, YAMAGATA A, et al. Fan noise prediction using unsteady CFD analysis: AIAA-2002-2491[R]. Reston: AIAA, 2002. |
17 | CAROLUS T, SCHNEIDER M, REESE H. Axial flow fan broad-band noise and prediction[J]. Journal of Sound and Vibration, 2007, 300(1/2): 50-70. |
18 | HOLEWA A, GUéRIN S, NEUHAUS L, et al. Tones from an aero-engine fan: Comparison between harmonic-balance simulation and experiment: AIAA-2016-3060[R]. Reston: AIAA, 2016. |
19 | AKHTAR T T, LI X D, TANG X L. Hybrid CFD-CAA numerical simulation of rotor-stator interaction tonal noise[C]∥2019 16th International Bhurban Conference on Applied Sciences and Technology. Piscataway: IEEE Press, 2019: 697-702. |
20 | 王良锋, 乔渭阳, 纪良, 等. 基于流场/声场混合模型的叶轮机械单音噪声研究[J]. 航空学报, 2014, 35(9): 2481-2490. |
WANG L F, QIAO W Y, JI L, et al. Turbomachinery tonal noise study based on flow-field/acoustic-field hybrid model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2481-2490 (in Chinese). | |
21 | LEBRUN M, FAVRE C. Fan-OGV unsteady Navier-Stokes computation using an adapted acoustic mesh: AIAA-2004-2995[R]. Reston: AIAA, 2004. |
22 | KAZAWA J, HORIGUCHI Y, SAIKI K, et al. Numerical study on fan noise generated by rotor-stator interaction: AIAA-2007-3681[R]. Reston: AIAA, 2007. |
23 | STEGER M, MICHEL U, ASHCROFT G, et al. Tone noise reduction of a turbofan engine by additional aerodynamical blade forces: AIAA-2010-3982[R]. Reston: AIAA, 2010. |
24 | VAN ZANTE D, ENVIA E. Simulation of turbine tone noise generation using a turbomachinery aerodynamics solver: AIAA-2009-3282[R]. Reston: AIAA, 2009. |
25 | FREY C, ASHCROFT G, KERSKEN H P. Simulations of unsteady blade row interactions using linear and non-linear frequency domain methods[C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015. |
26 | LINDBLAD D, ANDERSSON N. Validating the harmonic balance method for turbomachinery tonal noise predictions: AIAA-2017-1171[R]. Reston: AIAA, 2017. |
27 | ZHAO L, QIAO W Y, JI L. Computational fluid dynamics simulation of sound propagation through a blade row[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2210-2217. |
28 | OVENDEN N C, RIENSTRA S W. Mode-matching strategies in slowly varying engine ducts[J]. AIAA Journal, 2004, 42(9): 1832-1840. |
29 | BOULEY S, FRAN?OIS B, ROGER M, et al. On a mode-matching technique for sound generation and transmission in a linear cascade of outlet guide vanes: AIAA-2015-2825[R]. Reston: AIAA, 2015. |
30 | WOHLBRANDT A, WECKMüLLER C, GUéRIN S. A robust extension to the triple plane pressure mode matching method by filtering convective perturbations[J]. International Journal of Aeroacoustics, 2016, 15(1/2): 41-58. |
31 | WILSON A. A method for deriving tone noise information from CFD calculations on the aeroengine fan stage: ADP014097[R/OL]. [2023-02-10]. . |
32 | GUéRIN S. Improvement of the triple-plane pressure mode matching technique and application to harmonic balance simulations[C]∥16th International Symposium on Unsteady Aerodynamics Aeroacoustics and Aeroelasticity of Turbomachines. 2022. |
33 | TYLER J M, SOFRIN T G. Axial flow compressor noise studies[M]. Warrendale: SAE International, 1962: 309-332. |
/
〈 |
|
〉 |