Fluid Mechanics and Flight Mechanics

Direct numerical simulation of hypersonic cone-flare model at angle of attack

  • Jiang LAI ,
  • Zhaolin FAN ,
  • Qian WANG ,
  • Siwei DONG ,
  • Fulin TONG ,
  • Xianxu YUAN
Expand
  • 1.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.Computational Aerodynamics Institute,China Aerodynamics Research & Development Center,Mianyang 621000,China
    3.China Aerodynamics Research & Development Center,Mianyang 621000,China
E-mail: 515363491@qq.com

Received date: 2023-02-24

  Revised date: 2023-03-17

  Accepted date: 2023-04-06

  Online published: 2023-04-11

Supported by

National Natural Science Foundation of China(11972356)

Abstract

A direct numerical simulation of a hypersonic 7°-34° cone-flare model at an angle of attack is carried out. By comparing the flow characteristics on 0°, 90° and 180° sections, we evaluate the effect of crossflow on shock wave and boundary layer interaction in terms of the distribution of wall pressure, skin friction and heat transfer, the unsteady motion of the separation bubble, and the evolution of the reattached boundary layer. It is found that the flow separation occurs near the corner, and the interaction of the shock wave and boundary layer in the crossflow and windward region leads to a significant increase in wall pressure, skin friction, and heat transfer. The ratio of heat transfer to pressure exhibits a rise in the interaction region, followed by a drop caused by the reattachment, while the Reynolds analogy is completely invalid in the separation zone. Low-frequent unsteady expansion/contraction motion of the separation bubble is revealed through spectral analysis of the bubble area fluctuation. It is closely related to the low frequency shock wave oscillation in the crossflow region; however, hysteresis occurs in the windward region while is irrelevant in the leeward region. Based on the proper orthogonal decomposition results of the velocity fluctuation field, the separation region is related to large-scale structures near the shear layer in the low-order modes. The evolution of the reattached boundary layer shows the drastic Reynolds stress increase in vicinity of the reattachment point caused by the angle of attack, with the streamwise component recovering rapidly. Meanwhile, the peak location of Reynolds stress components continues to move outward in the leeward region, and has rapidly recovered to the inner layer in the windward region and the crossflow region. In addition, the distribution of Reynolds stress anisotropy invariants further indicates that the peak value of the turbulence anisotropy in the near-wall region downstream of the interaction is weaker in the leeward region than in the windward region.

Cite this article

Jiang LAI , Zhaolin FAN , Qian WANG , Siwei DONG , Fulin TONG , Xianxu YUAN . Direct numerical simulation of hypersonic cone-flare model at angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(2) : 128610 -128610 . DOI: 10.7527/S1000-6893.2023.28610

References

1 GREEN J E. Interactions between shock waves and turbulent boundary layers[J]. Progress in Aerospace Sciences197011: 235-340.
2 DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: What next?[J]. AIAA Journal200139: 1517-1531.
3 GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences201572: 80-99.
4 LIGRANI P M, MCNABB E S, COLLOPY H, et al. Recent investigations of shock wave effects and interactions[J]. Advances in Aerodynamics20202: 4.
5 GAITONDE D V, ADLER M C. Dynamics of three-dimensional shock-wave/boundary-layer interactions[J]. Annual Review of Fluid Mechanics202355: 291-321.
6 PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids200618(6): 065113.
7 PIROZZOLI S, BERNARDINI M. Direct numerical simulation database for impinging shock wave/turbulent boundary-layer interaction[J]. AIAA Journal201149(6): 1307-1312.
8 CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics201446(1): 469-492.
9 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报202243(1): 625917.
  FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica202243(1): 625917 (in Chinese).
10 FANG J, ZHELTOVODOV A A, YAO Y F, et al. On the turbulence amplification in shock-wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics2020897: A32.
11 童福林, 董思卫, 段俊亦, 等. 激波/湍流边界层干扰分离泡直接数值模拟[J]. 航空学报202243(3): 125437.
  TONG F L, DONG S W, DUAN J Y, et al. Direct numerical simulation of shock wave/turbulent boundary layer interference separation bubble[J]. Acta Aeronautica et Astronautica Sinica202243(3): 125437 (in Chinese).
12 HOLDEN M. Database of aerothermal measurements in hypersonic flow “building block” experiments[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
13 WRIGHT M J, SINHA K, OLEJNICZAK J, et al. Numerical and experimental investigation of double-cone shock interactions[J]. AIAA Journal200038(12): 2268-2276.
14 NOMPELIS I, CANDLER G V, HOLDEN M S. Effect of vibrational nonequilibrium on hypersonic double-cone experiments[J]. AIAA Journal200341(11): 2162-2169.
15 CANDLER G, NOMPELIS I, DRUGUET M C. Navier-Stokes predictions of hypersonic double-cone and cylinder-flare flow fields[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
16 TUMUKLU O, THEOFILLS V, LEVIN D A. On the unsteadiness of shock-laminar boundary layer interactions of hypersonic flows over a double cone[J]. Physics of Fluids201830(10): 106111.
17 HOLDEN M. Experimental studies of quasi-two-dimensional and three-dimensional viscous interaction regions induced by skewed-shock and swept-shock boundary layer interaction[C]∥ Proceedings of the 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston: AIAA, 1984.
18 HOLDEN M, HAVENER A, LEE C. Shock wave/turbulent boundary layer interaction in high-reynolds-number hypersonic flows[C]∥ Proceedings of the 10th Aerospace Sciences Meeting. Reston: AIAA, 1987.
19 冈敦殿. 超声速平板突起物及双锥绕流实验研究[D]. 长沙: 国防科学技术大学, 2013: 43-61.
  GANG D D. Experimental study on supersonic flat plate protrusion and double cone flow[D].Changsha: National University of Defense Technology, 2013: 43-61. (in Chinese)
20 RUNNING C L, JULIANO T J, JEWELL J S, et al. Hypersonic shock-wave/boundary-layer interactions on a cone/flare model[C]∥Proceedings of the 2018 Fluid Dynamics Conference. Reston: AIAA, 2018.
21 RUNNING C L, JULIANO T J, JEWELL J S, et al. Hypersonic shock-wave/boundary-layer interactions on a cone/flare[J]. Experimental Thermal and Fluid Science2019109: 109911.
22 RUNNING C L, JULIANO T J, BORG M P, et al. Characterization of post-shock thermal striations on a cone/flare[J]. AIAA Journal202058(5): 2352-2358.
23 RUNNING C L, JULIANO T J. Global measurements of hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint[J]. Experiments in Fluids202162(5): 91.
24 SHIPLYUK A N. Experimental investigation of stability of a hypersonic boundary layer on a cone-flare model[J]. Journal of Applied Mechanics and Technical Physics200142(4): 589-595.
25 BEDAREV I A, MASLOV A A, SIDORENKO A A, et al. Experimental and numerical study of a hypersonic separated flow in the vicinity of a cone-flare model[J]. Journal of Applied Mechanics and Technical Physics200243(6): 867-876.
26 FRAYSSINET O. Numerical analysis of a separated flow on a supersonic cone flare model[C]∥Proceedings of the 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016.
27 TONG F L, DUAN J Y, LAI J, et al. Hypersonic shock wave and turbulent boundary layer interaction in a sharp cone/flare model[J]. Chinese Journal of Aeronautics202236(3): 80-95.
28 SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown[J]. Journal of Fluid Mechanics2015768: 175-218.
29 HUANG J J, DUAN L, CASPER K M, et al. Direct numerical simulation of turbulent pressure fluctuations over a cone at Mach 8[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
30 PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids200416(3): 530-545.
31 MARTíN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics2006220(1): 270-289.
32 WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal200745(4): 879-889.
33 POINSOT T J. Boundary conditions for direct simulations of compressible viscous flows[J]. Journal of Computational Physics1992101: 101-129.
34 BACK L H, CUFFEL R F. Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves[J]. AIAA Journal19708(10): 1871-1873.
35 ROY C J, BLOTTNER F G. Review and assessment of turbulence models for hypersonic flows[J]. Progress in Aerospace Sciences200642(7-8): 469-530.
36 MURRAY N, HILLIER R, WILLIAMS S. Experimental investigation of axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions[J]. Journal of Fluid Mechanics2013714: 152-189.
37 PRIEBE S, MARTíN M. Turbulence in a hypersonic compression ramp flow[J]. Physical Review Fluids20216(3): 034601.
38 LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction[J]. Journal of Fluid Mechanics2006565: 135.
39 A-M SCHREYER, SAHOO D, WILLIAMAS O J H, et al. Experimental investigation of two hypersonic shock/turbulent boundary-layer interactions[J]. AIAA Journal201856(12): 4830-4844.
40 PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics2008613: 205-231.
41 LUMLEY J L. Computational modeling of turbulent flows[M]∥Advances in Applied Mechanics. Amsterdam: Elsevier, 1979: 123-176.
Outlines

/