Electronics and Electrical Engineering and Control

Intelligent reflector surface assisted UAV mobile edge computing task data maximization method

  • Wei LI ,
  • Yan GUO ,
  • Ning LI ,
  • Cuntao LIU ,
  • Hao YUAN
Expand
  • College of Communications Engineering,Army Engineering University,Nanjing 210016,China

Received date: 2023-01-09

  Revised date: 2023-02-06

  Accepted date: 2023-03-22

  Online published: 2023-03-31

Abstract

Due to the complex communication environment, the link between User Equipment (UE) and Unmanned Aerial Vehicle (UAV) is easily blocked and the communication quality is poor. This paper proposes to use an Intelligent Reflector Surface (IRS) to reconstruct the communication environment and enhance the performance of UAV mobile edge computing network. Considering the constraints of equipment energy consumption and computing power, the user task data is maximized by jointly optimizing intelligent reflector movement control, UAV flight trajectory, transmission power and time slot division. The above highly complex nonconvex problems are divided into three sub-problems. Firstly, the closed-form solution for intelligent reflector surface shift is derived. Then, the relaxation variable, first-order Taylor expression and successive convex approximation technique are introduced to transform the original problem into two approximate convex problems, namely transmission power, and slot division and trajectory optimization. Finally, the iterative solution is obtained based on the block coordinate descent method. The simulation results show that compared with the traditional UAV moving edge calculation, the proposed method can effectively improve the amount of mission data.

Cite this article

Wei LI , Yan GUO , Ning LI , Cuntao LIU , Hao YUAN . Intelligent reflector surface assisted UAV mobile edge computing task data maximization method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(19) : 328486 -328486 . DOI: 10.7527/S1000-6893.2023.28486

References

1 WANG X F, HAN Y W, LEUNG V C M, et al. Convergence of edge computing and deep learning: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials202022(2): 869-904.
2 CHEN Y, ZHANG N, ZHANG Y C, et al. Energy efficient dynamic offloading in mobile edge computing for Internet of Things[J]. IEEE Transactions on Cloud Computing20219(3): 1050-1060.
3 PENG X T, OTA K, DONG M X. Multiattribute-based double auction toward resource allocation in vehicular fog computing[J]. IEEE Internet of Things Journal20207(4): 3094-3103.
4 LIU L, FENG J, PEI Q Q, et al. Blockchain-enabled secure data sharing scheme in mobile-edge computing: An asynchronous advantage actor–critic learning approach[J]. IEEE Internet of Things Journal20218(4): 2342-2353.
5 HUANG W, OTA K, DONG M X, et al. Result return aware offloading scheme in vehicular edge networks for IoT[J]. Computer Communications2020164: 201-214.
6 CISCO. COSIC visual networking index: Global mobile data traffic forecast update [S]. San Francisco: CISCO, 2017–2022 .
7 赛迪智库无线电管理研究所. 6G概念及愿景白皮书[N]. 中国计算机报, 2020: 008.
  SADUE Think Tank Radio Management Institute. 6G Concept and Vision White Paper [N]. Chinese Computer2020: 008 (in Chinese).
8 WANG J, NA Z Y, LIU X. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled Internet of Things[J]. IEEE Internet of Things Journal20218(20): 15096-15106.
9 KHUWAJA A A, CHEN Y F, ZHAO N, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials201820(4): 2804-2821.
10 DUO B, WU Q Q, YUAN X J, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology202069(12): 16288-16293.
11 COSTANTINO D, ANGELINI M G, VOZZA G. The engineering and assembly of a low cost UAV[C]∥ 2015 IEEE Metrology for Aerospace (MetroAeroSpace). Piscataway: IEEE Press, 2015: 351-355.
12 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报202244(3): 781-789.
  CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology202244(3): 781-789 (in Chinese).
13 LIU X, LIU Y W, CHEN Y, et al. Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach[J]. IEEE Transactions on Vehicular Technology201968(8): 7957-7969.
14 MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials201921(3): 2334-2360.
15 HUANG C W, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications201918(8): 4157-4170.
16 WU Q Q, ZHANG R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine202058(1): 106-112.
17 LIANG Y C, LONG R Z, ZHANG Q Q, et al. Large intelligent surface/antennas (LISA): Making reflective radios smart[J]. Journal of Communications and Information Networks20194(2): 40-50.
18 PANG X W, SHENG M, ZHAO N, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications202128(5): 164-170.
19 MAHMOUD A, MUHAIDAT S, SOFOTASIOS P C, et al. Intelligent reflecting surfaces assisted UAV communications for IoT networks: Performance analysis[J]. IEEE Transactions on Green Communications and Networking20215(3): 1029-1040.
20 LIU Z X, ZHAO S H, WU Q Q, et al. Joint trajectory design and resource allocation for IRS-assisted UAV communications with wireless energy harvesting[J]. IEEE Communications Letters202226(2): 404-408.
21 CAI Y X, WEI Z Q, HU S K, et al. Resource allocation and 3D trajectory design for power-efficient IRS-assisted UAV-NOMA communications[J]. IEEE Transactions on Wireless Communications202221(12): 10315-10334.
22 GE L H, DONG P H, ZHANG H, et al. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications[J]. IEEE Access20208: 78702-78712.
23 CAI Y X, WEI Z Q, HU S K, et al. Resource allocation for power-efficient IRS-assisted UAV communications[C]∥ 2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway: IEEE Press, 2020: 1-7.
24 ZHANG T K, XU Y, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics202016(8): 5505-5516.
25 HE Z Q, YUAN X J. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters20209(2): 210-214.
26 MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]∥ ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2019: 4659-4663.
27 DI RENZO M, NTONTIN K, SONG J, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open Journal of the Communications Society20201: 798-807.
28 BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge, 2004.
29 YANG J N, CHEN J J, YANG Z L. Energy-efficient UAV communication with trajectory optimization[C]∥ 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). Piscataway: IEEE Press, 2022: 508-514.
30 AZIZI M. Atomic orbital search: A novel metaheuristic algorithm[J]. Applied Mathematical Modelling202193: 657-683.
31 李少波, 张成龙, 郑凯. 基于改进粒子群算法的制造车间WSN部署优化[J]. 仪表技术与传感器2017(10): 101-104.
  LI S B, ZHANG C L, ZHENG K. Node deployments optimization in wireless sensor networks based on improved particle swarm algorithm[J]. Instrument Technique and Sensor2017(10): 101-104 (in Chinese).
Outlines

/