ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress of shock wave/boundary layer interaction controls induced by bump
Received date: 2022-12-19
Revised date: 2023-01-10
Accepted date: 2023-02-06
Online published: 2023-02-10
Supported by
National Key R & D Program of China(2019YFA0405300);National Natural Science Foundation of China(11972368)
The flow control of hypersonic vehicles faces complex shock wave/boundary layer interaction problems, and effective shock wave/boundary layer interaction control technologies have become a research hotspot. This paper reviews the research progress of passive control of shock wave/boundary layer interaction based on bumps. The main flow characteristics of shock wave/boundary layer interaction are introduced, and the research progress of shock wave/boundary layer interaction is summarized. The mechanism and research progress of shock wave control bumps for drag reduction of transonic wings in the external flow field, and wall bumps for supersonic and hypersonic flow control in the internal flow field are reviewed. The flow control performance of bumps is analyzed and its development prospected.
Shanshan TIAN , Liang JIN , Zhaobo DU , Xiangyu ZHONG , Wei HUANG , Yuanyang LIU . Research progress of shock wave/boundary layer interaction controls induced by bump[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(18) : 28411 -028411 . DOI: 10.7527/S1000-6893.2023.28411
1 | HADJADJ A, DUSSAUGE J P. Shock wave boundary layer interaction[J]. Shock Waves, 2009, 19(6): 449-452. |
2 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
3 | HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences, 2018, 101: 13-30. |
4 | HUANG W, DU Z B, YAN L, et al. Supersonic mixing in airbreathing propulsion systems for hypersonic flights[J]. Progress in Aerospace Sciences, 2019, 109: 100545. |
5 | HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. |
6 | SCHüLEIN E, SCHNEPF C, WEISS S. Concave bump for impinging-shock control in supersonic flows[J]. AIAA Journal, 2022, 60(5): 2749-2766. |
7 | ZHANG Y, TAN H J, TIAN F C, et al. Control of incident shock/boundary-layer interaction by a two-dimensional bump[J]. AIAA Journal, 2014, 52(4): 767-776. |
8 | ZHANG Y, TAN H J, SUN S, et al. Control of cowl shock/boundary-layer interaction in hypersonic inlets by bump[J]. AIAA Journal, 2015, 53(11): 3492-3496. |
9 | ZHANG Y, TAN H J, LI J F, et al. Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump[J]. AIAA Journal, 2018, 57(2): 696-705. |
10 | LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5): 389-420. |
11 | 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. |
WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). | |
12 | BAGHERI H, AGHA MIRJALILY S ALI, OLOOMI S A A, et al. Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation[J]. Acta Astronautica, 2021, 178: 616-624. |
13 | 张悦, 高婉宁, 程代姝. 基于记忆合金的可变形涡流发生器控制唇罩激波/边界层干扰研究[J]. 推进技术, 2018, 39(12): 2755-2763. |
ZHANG Y, GAO W N, CHENG D S. Control of cowl shock/boundary layer interaction by variable microramps based on shape memory alloy[J]. Journal of Propulsion Technology, 2018, 39(12): 2755-2763 (in Chinese). | |
14 | MONTAZER E, YARMAND H, SALAMI E, et al. A brief review study of flow phenomena over a backward-facing step and its optimization[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 994-1005. |
15 | LI W P, LIU H. Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing step[J]. Aerospace Science and Technology, 2019, 84: 1011-1019. |
16 | ZHAI J, ZHANG C N, WANG F M, et al. Control of shock-wave/boundary-layer interaction using a backward-facing step[J]. Aerospace Science and Technology, 2022, 126: 107665. |
17 | ZHANG B H, ZHAO Y X, LIU J. Effects of bleed hole size on supersonic boundary layer bleed mass flow rate[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(8): 652-662. |
18 | REZA MAADI S, SEPAHI-YOUNSI J. Effects of bleed type on the performance of a supersonic intake[J]. Experimental Thermal and Fluid Science, 2022, 132: 110568. |
19 | YAN L, WU H, HUANG W, et al. Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow[J]. Acta Astronautica, 2020, 173: 131-138. |
20 | DU Z B, SHEN C B, SHEN Y, et al. Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet[J]. Acta Astronautica, 2021, 181: 468-481. |
21 | KANE A A, PEETALA R K, KULKARNI V. Investigation of pressure feedback technique to control ramp based SWBLI[J]. Acta Astronautica, 2022, 201: 482-495. |
22 | 钟翔宇, 黄伟, 钮耀斌, 等. 高超声速飞行器激波/边界层干扰控制方法综述[J]. 飞航导弹, 2021(6): 42-48,62. |
ZHONG X Y, HUANG W, NIU Y B, et al. A review of shock/boundary layer interference control methods for hypersonic vehicles[J]. Aerodynamic Missile Journal, 2021(6): 42-48,62 (in Chinese). | |
23 | NAGAMATSU H, OROZCO R. Porosity effect on supercritical airfoil drag reduction by shock wave/boundary layer control[C]∥Proceedings of the 17th Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston: AIAA, 1984. |
24 | NAGAMATSU H, FICARRA R. Supercritical airfoil drag reduction by passive shock wave/boundary layer control in the Mach number range.75 to.90[C]∥Proceedings of the 23rd Aerospace Sciences Meeting. Reston: AIAA, 1985. |
25 | TINDELL R, WILLIS B, TINDELL R, et al. Experimental investigation of blowing for controlling oblique shock/boundary layer interactions[C]∥Proceedings of the 33rd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1997. |
26 | SRIRAM R, JAGADEESH G. Shock tunnel experiments on control of shock induced large separation bubble using boundary layer bleed[J]. Aerospace Science and Technology, 2014, 36: 87-93. |
27 | 徐浩, 杜兆波, 钟翔宇, 等. 超声速气流中激波/边界层干扰微射流控制研究进展[J]. 航空兵器, 2022, 29(4): 83-90. |
XU H, DU Z B, ZHONG X Y, et al. Research progress of microjet control of shock wave/boundary layer interactions in supersonic flow field[J]. Aero Weaponry, 2022, 29(4): 83-90 (in Chinese). | |
28 | VERMA S B, MANISANKAR C, AKSHARA P. Control of shock-wave boundary layer interaction using steady micro-jets[J]. Shock Waves, 2015, 25(5): 535-543. |
29 | VERMA S B, MANISANKAR C. Control of compression-ramp-induced interaction with steady microjets[J]. AIAA Journal, 2019, 57(7): 2892-2904. |
30 | SHARMA V, ESWARAN V, CHAKRABORTY D. Determination of optimal spacing between transverse jets in a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 96: 105520. |
31 | CHEN Z Y, HU K X, MAO Y B, et al. Simple integral model for trajectories of jet deflection in crossflow[J]. Physics of Fluids, 2021, 33(11): 111703. |
32 | GAHLOT N K, SINGH N K. Numerical study of supersonic mixed compression air intake with an array of air jets[J]. Journal of Fluids Engineering, 2021, 143(4): 041206. |
33 | RAMASWAMY D P, SCHREYER A M. Effects of jet-to-jet spacing of air-jet vortex generators in shock-induced flow-separation control[J]. Flow, Turbulence and Combustion, 2022, 109(1): 35-64. |
34 | FENG L M, WANG H Y, CHEN Z, et al. Unsteadiness characterization of shock wave/turbulent boundary layer interaction controlled by high-frequency arc plasma energy deposition[J]. Physics of Fluids, 2021, 33(1): 015114. |
35 | TANG M X, WU Y, ZONG H H, et al. Experimental investigation on compression ramp shock wave/boundary layer interaction control using plasma actuator array[J]. Physics of Fluids, 2021, 33(6): 066101. |
36 | YANG H S, ZONG H H, LIANG H A, et al. Swept shock wave/boundary layer interaction control based on surface arc plasma[J]. Physics of Fluids, 2022, 34(8): 087119. |
37 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
38 | 王宏宇, 杨彦广, 胡伟波, 等. 高频微秒脉冲放电控制激波/边界层干扰非定常性的实验研究[J]. 航空学报, 2022, 43(1): 625905. |
WANG H Y, YANG Y G, HU W B, et al. Experimental study on unsteadiness characteristics of shock wave/turbulent boundary layer interaction controlled by high-frequency microsecond pulse discharge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625905 (in Chinese). | |
39 | 李成成, 李芳, 杨斌, 等. 等离子体激励抑制喷管分离流动数值模拟[J]. 航空学报, 2021, 42(7): 124547. |
LI C C, LI F, YANG B, et al. Numerical investigation of nozzle flow separation control using plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124547 (in Chinese). | |
40 | KALRA C S, ZAIDI S H, MILES R B, et al. Shockwave-turbulent boundary layer interaction control using magnetically driven surface discharges[J]. Experiments in Fluids, 2011, 50(3): 547-559. |
41 | BISEK N J, RIZZETTA D P, POGGIE J. Plasma control of a turbulent shock boundary-layer interaction[J]. AIAA Journal, 2013, 51(8): 1789-1804. |
42 | 李益文, 樊昊, 张百灵, 等. 超声速非平衡电离磁流体流动控制试验和数值模拟[J]. 航空学报, 2017, 38(3): 120368. |
LI Y W, FAN H, ZHANG B L, et al. Test and numerical simulation on magneto-hydrodynamic flow control with nonequilibrium ionization[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120368 (in Chinese). | |
43 | XUE L, SCHRIJER F F J, VAN OUDHEUSDEN B W, et al. Theoretical study on regular reflection of shock wave-boundary layer interactions[J]. Journal of Fluid Mechanics, 2020, 899: A30. |
44 | FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946[R]. Washington, D.C.: NACA, 1940. |
45 | CHAPMAN D R. Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition: NACA-TR-1356 [R]. Washington, D.C.: NACA, 1958. |
46 | MACCORMACK R W. Numerical solution of the interaction of a shock wave with a laminar boundary layer[M]∥Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics. Berlin: Springer Berlin Heidelberg, 2008: 151-163. |
47 | MACCORMACK R, PAULLAY A. Computational efficiency achieved by time splitting of finite difference operators[C]∥Proceedings of the 10th Aerospace Sciences Meeting. Reston: AIAA, 1972. |
48 | BALDWIN B, MACCORMACK R. Numerical solution of the interaction of a strong shock wave with a hypersonic turbulent boundary layer[C]∥Proceedings of the 7th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1974. |
49 | HUNG C, MACCORMACK R. Numerical solutions of supersonic and hypersonic laminar flows over a two-dimensional compression corner[C]∥Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975. |
50 | URBIN G, KNIGHT D, ZHELTOVODOV A. Large eddy simulation of a supersonic compression corner. [C]∥Proceedings of the 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. |
51 | TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29(12): 125101. |
52 | SUN Z, GAN T, WU Y. Shock-wave/boundary-layer interactions at compression ramps studied by highspeed schlieren[J]. AIAA Journal, 2020, 58(4): 1681-1688. |
53 | XIE W Z, YANG S Z, ZENG C, et al. Improvement of the free-interaction theory for shock wave/turbulent boundary layer interactions[J]. Physics of Fluids, 2021, 33(7): 075104. |
54 | HUANG X, WANG L X, ZHONG D D, et al. Unsteady motion of shock wave for a supersonic compression ramp flow based on large eddy simulation[J]. Frontiers in Energy Research, 2022, 10: 854019. |
55 | JIANG Z, JI Y C, WANG J C. Compressibility effect on interaction of shock wave and turbulent boundary layer[J]. Physics of Fluids, 2022, 34(7): 075122. |
56 | BAO Y E, QIU R F, ZHOU K, et al. Study of shock wave/boundary layer interaction from the perspective of nonequilibrium effects[J]. Physics of Fluids, 2022, 34(4): 046109. |
57 | JHA A K, SHUKLA P, KHISTI P M, et al. Investigation of onset of velocity transition in free convection over an inclined flat plate by PIV[J]. Experimental Thermal and Fluid Science, 2023, 140: 110764. |
58 | BRUCE P J K, COLLISS S P. Review of research into shock control bumps[J]. Shock Waves, 2015, 25(5): 451-471. |
59 | ASHILL P, FULKER J, SHIRES A. A novel technique for controlling shock strength of laminar-flow airfoil sections, paper presented to the first european forum on laminar flow technology[C]∥Proceeding of 1st Europe Forurn on Laminar Flow Technology. 1992. |
60 | MAZAHERI K, KIANI K C, NEJATI A,et al. Optimization and analysis of shock wave/boundary layer interaction for drag reduction by shock control bump[J]. Aerospace Science and Technology, 2015, 42: 196-208. |
61 | COLLISS S P, BABINSKY H, NüBLER K, et al. Vortical structures on three-dimensional shock control bumps[J]. AIAA Journal, 2016, 54(8): 2338-2350. |
62 | HOLDEN H, BABINSKY H. Shock/boundary layer interaction control using 3D devices[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
63 | NUEBLER K, LUTZ T, KRAEMER E, et al. Shock control bump robustness enhancement[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
64 | HAMID M A, TOUFIQUE HASAN A B M, ALIMUZZAMAN S M, et al. Compressible flow characteristics around a biconvex arc airfoil in a channel[J]. Propulsion and Power Research, 2014, 3(1): 29-40. |
65 | YANG Y, LIU X Q, SAEED A. Transonic drag reduction on supercritical wing section using shock control bumps[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2012, 29(3): 207-214. |
66 | BRUCE P J, COLLISS S, BABINSKY H. Three-dimensional shock control bumps: Effects of geometry[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
67 | 聂瑞, 裘进浩, 季宏丽, 等. 自适应鼓包气动构型优化与结构概念设计[J]. 工程热物理学报, 2017, 38(9): 1896-1905. |
NIE R, QIU J H, JI H L, et al. Aerodynamic configuration optimization and structural concept design of adaptive bump[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1896-1905 (in Chinese). | |
68 | 陈旭亮, 张琛, 季宏丽, 等. SMA鼓包迟滞建模与控制策略[J]. 航空学报, 2021, 42(9): 224652. |
CHEN X L, ZHANG C, JI H L, et al. SMA bump hysteresis modeling and control strategy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224652 (in Chinese). | |
69 | 李沛峰, 陶于金, 张彬乾, 等. 翼身融合布局鼓包激波减阻技术研究[J]. 应用力学学报, 2018, 35(6): 1185-1191, 1413. |
LI P F, TAO Y J, ZHANG B Q, et al. Investigation of shock control bump for blended wing body configuration[J]. Chinese Journal of Applied Mechanics, 2018, 35(6): 1185-1191, 1413 (in Chinese). | |
70 | DENG F, QIN N. Vortex-generating shock control bumps for robust drag reduction at transonic speeds[J]. AIAA Journal, 2021, 59(10): 3900-3909. |
71 | 章胜华, 邓枫, 覃宁, 等. 激波控制鼓包对跨声速抖振影响的数值研究[J]. 航空学报, 2022, 43(11): 526806. |
ZHANG S H, DENG F, QIN N, et al. Numerical study on impact of shock control bump on transonic buffet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 526806 (in Chinese). | |
72 | DENG F, QIN N, LIU X Q, et al. Shock control bump optimization for a low sweep supercritical wing[J]. Science China Technological Sciences, 2013, 56(10): 2385-2390. |
73 | GRAMOLA M, BRUCE P J K, SANTER M. Passive control of 3D adaptive shock control bumps using a sealed cavity[J]. Journal of Fluids and Structures, 2022, 112: 103580. |
74 | HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
75 | BERNARDINI M, PIROZZOLI S, GRASSO F. The wall pressure signature of transonic shock/boundary layer interaction[J]. Journal of Fluid Mechanics, 2011, 671: 288-312. |
76 | PASQUARIELLO V, HICKEL S, ADAMS N A. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number[J]. Journal of Fluid Mechanics, 2017, 823: 617-657. |
77 | SARTOR F, METTOT C, BUR R, et al. Unsteadiness in transonic shock-wave/boundary-layer interactions: Experimental investigation and global stability analysis[J]. Journal of Fluid Mechanics, 2015, 781: 550-577. |
78 | MORGAN B, DURAISAMY K, NGUYEN N, et al. Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2013, 729: 231-284. |
79 | VIVEK P, MITTAL S. Buzz instability in a mixed-compression air intake[J]. Journal of Propulsion and Power, 2009, 25(3): 819-822. |
80 | HERRMANN D, SIEBE F, GüLHAN A. Pressure fluctuations (buzzing) and inlet performance of an airbreathing missile[J]. Journal of Propulsion and Power, 2013, 29(4): 839-848. |
81 | SIMON P, BROWN D, HUFF R. Performance of external-compression bump inlet at Mach numbers of 1.5 and 2.0: NACA-RM-E56L19 [R]. Washington, D.C.: NACA, 1957. |
82 | HAMSTRA J W, SYLVESTER T G. System and method for diverting boundary layer air: US5779189[P]. 1998-07-14. |
83 | SVENSSON M. A CFD investigation of a generic bump and its application to a diverterless supersonic inlet[D]. Link?ping: Link?ping University, 2008. |
84 | HAMSTRA J, MCCALLUM B, MCFARLAN J, et al. Development, verification and transition of an advanced engine inlet concept for combat aircraft application: MP-121-P-43[R]. Washington, D.C.: Lockheed Martin Aeronautics Company, 2003. |
85 | 梁德旺, 李博. 无隔道进气道反设计及附面层排除机理分析[J]. 航空学报, 2005, 26(3): 286-289. |
LIANG D W, LI B. Reverse design of diverterless inlet and mechanism of diversion of boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 286-289 (in Chinese). | |
86 | 杨应凯. 枭龙飞机Bump进气道设计[J]. 南京航空航天大学学报, 2007, 39(4): 449-452. |
YANG Y K. Design of bump inlet of thunder/JF-17 aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(4): 449-452 (in Chinese). | |
87 | 王娇, 谭慧俊, 黄河峡. Bump进气道中鼓包诱导的激波/边界层干扰特性[J]. 航空动力学报, 2018, 33(1): 97-107. |
WANG J, TAN H J, HUANG H X. Shock wave/boundary layer interactions induced by bump in the Bump inlet[J]. Journal of Aerospace Power, 2018, 33(1): 97-107 (in Chinese). | |
88 | SOLTANI M R, ASKARI R. On the performance of a body integrated diverterless supersonic inlet[J]. Aerospace Science and Technology, 2019, 91: 525-538. |
89 | ASKARI R, SOLTANI M R. Symmetric and asymmetric performance investigation of a diverterless supersonic inlet[J]. AIAA Journal, 2022, 60(5): 2850-2859. |
90 | ASKARI R, SOLTANI M R. Flow asymmetry in a Y-shaped diverterless supersonic inlet: A novel finding[J]. AIAA Journal, 2020, 58(6): 2609-2620. |
91 | ASKARI R, SOLTANI M R, MOSTOUFI K, et al. Angle of attack investigations on the performance of a diverterless supersonic inlet[J]. Journal of Applied Fluid Mechanics, 2019, 12(6): 2017-2030. |
92 | HUANG G P, ZUO F Y, QIAO W Y. Design method of internal waverider inlet under non-uniform upstream for inlet/forebody integration[J]. Aerospace Science and Technology, 2018, 74: 160-172. |
93 | YU Z H, HUANG G P, XIA C, et al. A pressure-controllable bump based on the pressure-ridge concept[J]. Aerospace Science and Technology, 2019, 87: 133-140. |
94 | XU S C, WANG Y, WANG Z G, et al. Effects of bump parameters on hypersonic inlet starting performance[J]. Journal of Zhejiang University-SCIENCE A, 2022, 23(10): 807-819. |
95 | 张悦, 谭慧俊, 张启帆, 等. 一种进气道内激波/边界层干扰控制的新方法及其流动机理[J]. 宇航学报, 2012, 33(2): 265-274. |
ZHANG Y, TAN H J, ZHANG Q F, et al. A new method and its flow mechanism for control of shock/boundary layer interaction in hypersonic inlet[J]. Journal of Astronautics, 2012, 33(2): 265-274 (in Chinese). |
/
〈 |
|
〉 |