ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Efficient eigenvalue analysis method for rotating stall inception
Received date: 2022-11-09
Revised date: 2022-11-25
Accepted date: 2023-01-03
Online published: 2023-02-01
Supported by
National Natural Science Foundation of China(52006177);National Defense Technology Key Laboratory Foundation(6142702200204)
Rotating stall limits the stable operating range of compressors, and a deep understanding and accurate prediction of this phenomenon is key to stall prediction and control. Existing models for stall prediction are based on simplification of the compressor geometry and flow, and thus applications of these models to stall onset prediction of actual compressors are faced with considerable challenges. Meanwhile, despite the progress in experimental measurements and flow simulations, most experiments and numerical simulations are phenomenological research, and did not reveal the root cause of compressor flow instability. Moreover, due to the complexity of three-dimensional flow measurements and the high cost of unsteady simulations, most stall studies are conducted only under isolated working conditions of a particular compressor, as a systematic parametric study to identify the key influencing factors is too costly. In order to circumvent the shortcomings of both measurements and unsteady simulations, a global stability analysis method based on the efficient eigenvalue solution of the three-dimensional flow governing equation is proposed. This method can obtain not only the spatial resolution that is difficult to achieve by experimental measurement, but also the same rich information of the three-dimensional flow perturbation development at a cost two to three orders smaller than the unsteady simulation. In this paper, for a typical transonic compressor annular cascade, the computational cost of the proposed method is only 28% of that for computing one steady speedline, and 155 times faster than the unsteady calculation. Therefore, the proposed method provides an important research tool for accurate and rapid prediction and mechanism research of rotational stall of compressors.
Key words: global stability analysis; eigenvalue method; compressor; rotating stall; modal wave
Shenren XU , Chen HE , Dakun SUN , Caijia YUAN , Dongming CAO , Jiazi ZHAO , Dingxi WANG . Efficient eigenvalue analysis method for rotating stall inception[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(14) : 628248 -628248 . DOI: 10.7527/S1000-6893.2023.28248
1 | DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery, 2016, 138(1): 011001. |
2 | EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering, 1955, 77(4): 455-467. |
3 | MCDOUGALL N M, CUMPSTY N A, HYNES T P. Stall inception in axial compressors[J]. Journal of Turbomachinery, 1990, 112(1): 116-123. |
4 | GARNIER V H, EPSTEIN A H, GREITZER E M. Rotating waves as a stall inception indication in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 290-301. |
5 | GREITZER E M. Review—Axial compressor stall phenomena[J]. Journal of Fluids Engineering, 1980, 102(2): 134-151. |
6 | DAY I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery, 1993, 115(1): 1-9. |
7 | HE L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power, 1997, 13(1): 31-38. |
8 | HE L, ISMAEL J O. Computations of bladerow stall inception in transonic flows[J]. The Aeronautical Journal, 1999, 103(1025): 317-324. |
9 | BRANDVIK T, PULLAN G. An accelerated 3D Navier-Stokes solver for flows in turbomachines[J]. Journal of Turbomachinery, 2011, 133(2): 021025. |
10 | PULLAN G, YOUNG A M, DAY I J, et al. Origins and structure of spike-type rotating stall[J]. Journal of Turbomachinery, 2015, 137(5): 051007. |
11 | CROUCH J D, GARBARUK A, MAGIDOV D, et al. Origin of transonic buffet on aerofoils[J]. Journal of Fluid Mechanics, 2009, 628: 357-369. |
12 | TIMME S. Global instability of wing shock-buffet onset[J]. Journal of Fluid Mechanics, 2020, 885: A37. |
13 | SARTOR F, TIMME S. Delayed detached-eddy simulation of shock buffet on half wing-body configuration[J]. AIAA Journal, 2017, 55(4): 1230-1240. |
14 | MASINI L, TIMME S, PEACE A J. Scale-resolving simulations of a civil aircraft wing transonic shock-buffet experiment[J]. AIAA Journal, 2020, 58(10): 4322-4338. |
15 | HE W, TIMME S. Triglobal infinite-wing shock-buffet study[J]. Journal of Fluid Mechanics, 2021, 925: A27. |
16 | GORDON K A. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D]. Cambridge: Massachusetts Institute of Technology, 1999. |
17 | SUN X F, LIU X H, HOU R W, et al. A general theory of flow-instability inception in turbomachinery[J]. AIAA Journal, 2013, 51(7): 1675-1687. |
18 | LIU X H, SUN D K, SUN X F. Basic studies of flow-instability inception in axial compressors using eigenvalue method[J]. Journal of Fluids Engineering, 2014, 136(3): 031102. |
19 | SUN X F, MA Y F, LIU X H, et al. Flow stability model of centrifugal compressors based on eigenvalue approach[J]. AIAA Journal, 2016, 54(8): 2361-2376. |
20 | HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal, 2018, 56(5): 1878-1893. |
21 | SCHMID P J, DE PANDO M F, PEAKE N. Stability analysis for n-periodic arrays of fluid systems[J]. Physical Review Fluids, 2017, 2(11): 113902. |
22 | AMESTOY P R, DUFF I S, L'EXCELLENT J Y, et al. MUMPS: A general purpose distributed memory sparse solver[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001: 121-130. |
23 | 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese). | |
24 | XU S R, LI Y, HUANG X Q, et al. Robust Newton–Krylov adjoint solver for the sensitivity analysis of turbomachinery aerodynamics[J]. AIAA Journal, 2021, 59(10): 4014-4030. |
25 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
26 | ALLMARAS S R, JOHNSON F T. Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[C]∥Seventh International Conference on Computational Fluid Dynamics (ICCFD7). 2012: 1-11. |
27 | HASCOET L, PASCUAL V. The Tapenade automatic differentiation tool: Principles, model, and specification[J]. ACM Transactions on Mathematical Software, 2013, 39(3): 1-43. |
28 | GEBREMEDHIN A H, NGUYEN D, PATWARY M M ALI, et al. ColPack: Software for graph coloring and related problems in scientific computing[J]. ACM Transactions on Mathematical Software, 2013, 40(1): 1-31. |
29 | SAAD Y. Iterative methods for sparse linear systems[M]. 2nd ed. Philadelphia: SIAM, 2003. |
30 | LEHOUCQ R B. Implicitly restarted Arnoldi methods and subspace iteration[J]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(2): 551-562. |
31 | LEHOUCQ R B, SORENSEN D C, YANG C. ARPACK user’s guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[M]. Philadelphia: SIAM, 1998. |
32 | HIGHAM D J, HIGHAM N J. MATLAB guide[M]. Philadelphia: SIAM, 2016. |
33 | VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python[J]. Nature Methods, 2020, 17(3): 261-272. |
34 | STRAZISAR A J, POWELL J A. Laser anemometer measurements in a transonic axial flow compressor rotor[J]. Journal of Engineering for Power, 1981, 103(2): 430-437. |
35 | KRAKOS J A, DARMOFAL D L. Effect of small-scale output unsteadiness on adjoint-based sensitivity[J]. AIAA Journal, 2010, 48(11): 2611-2623. |
36 | BREUGELMANS F A E, MATHIOUDAKIS K, CASALINI F. Rotating stall cells in a low-speed axial flow compressor[J]. Journal of Aircraft, 1985, 22(3): 175-181. |
/
〈 |
|
〉 |