Solid Mechanics and Vehicle Conceptual Design

Optimization technology for complex test load of civil fuselage panel

  • Yuchao GUO ,
  • Likai WANG ,
  • Xigui SUN ,
  • Xiaohua NIE
Expand
  • National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China

Received date: 2021-09-08

  Revised date: 2021-11-10

  Accepted date: 2021-12-05

  Online published: 2022-12-22

Supported by

Civil Aircraft Scientific Research Project(MJZ3-2N21);Key Research and Development of Shaanxi Province(2022ZDLGY02-03)

Abstract

Aiming at the problem of load prediction in the strength test of composite fuselage panel of civil aircraft, we construct an optimization model of the test load based on the strain error matrix, and predict the test load using the multi-dimensional minima optimization algorithm. Firstly, based on the load form of the fuselage panel in the test device, the finite element model of the fuselage panel and the test device was established, and the strain matrix of the fuselage panel under each test reference load calculated. Secondly, the fuselage panel strain error matrix was constructed based on the difference between the strain matrices of the fuselage panel under the full fuselage load state and the test state, and considering the weighting coefficients of each element in the matrix. With the minimum sum of squares of all terms in the strain error matrix as the objective, each reference load coefficient as the optimization variable, and the upper and lower limits of each reference load coefficient as the constraints, the reference load coefficient optimization function was constructed. The optimization function was then processed unconstrained based on the penalty function method, and the reference load coefficients obtained by the steepest gradient method. Finally, based on the optimized load, the strain of the fuselage panel under the composite load of the test was calculated. Compared with the strain of the fuselage panel under the full fuselage load, the distribution trend of the strain was basically the same with the strain error within 10%, proving that this method can provide support for the determination of the test load of the fuselage panel.

Cite this article

Yuchao GUO , Likai WANG , Xigui SUN , Xiaohua NIE . Optimization technology for complex test load of civil fuselage panel[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(17) : 227989 -227989 . DOI: 10.7527/S1000-6893.2022.27989

References

1 WALKER T H, MINGUET P J, FLYNN B W,et al. Advanced technology composite fuselage—structural performance:NASA contractor report 4732[R]. Washington,D.C.:NASA,1997.
2 BISAGNI C, VESCOVINI R, DáVILA C G. Single-stringer compression specimen for the assessment of damage tolerance of postbuckled structures[J]. Journal of Aircraft201148(2): 495-502.
3 汪厚冰, 林国伟, 韩雪冰, 等. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报201940(8): 222889.
  WANG H B, LIN G W, HAN X B, et al. Shear buckling performance of composite hat-stiffened panels[J]. Acta Aeronautica et Astronautica Sinica201940(8): 222889 (in Chinese).
4 李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报202041(9): 223688.
  LI Z, WANG J, DENG F C, et al. Strength analysis and test verification of composite fuselage panels[J]. Acta Aeronautica et Astronautica Sinica202041(9): 223688 (in Chinese).
5 ACCARDO A, RICCI F, LUCARIELLO D, et al. Design of a combined loads machine for tests on fuselage barrels and curved panels[C]∥ 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virginia: AIAA, 2004: 1628.
6 ROUSE M. Methodologies for combined loads tests using a multi-actuator test machine[C]∥ Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 6. Cham: Springer, 2014: 205-214.
7 ANDREW E L. Configuration and sizing of a test fixture for panels under combined loads: NASA/CR-2006-214520[R].Washington,D.C.:NASA,2006.
8 BAKUCKAS J G.Full-scale testing and analysis of fuselage structure containing multiple cracks:DOT/FAA/AR-01/46[R]. Washington,D.C.:FAA,2002.
9 The Boeing Company. E-fixture:US7246527B2[P].2007-07-24.
10 IMA. The number one address for structural and material testing in the aerospace industry[Z/OL]. .
11 王彬文, 陈向明, 邓凡臣, 等. 飞机壁板复杂载荷试验技术[J]. 航空学报202243(3): 024987.
  WANG B W, CHEN X M, DENG F C, et al. Complex load test technology for aircraft panels: review[J]. Acta Aeronautica et Astronautica Sinica202243(3): 024987 (in Chinese).
12 陈安, 魏玉龙, 廖江海, 等. 机身加筋壁板复合加载损伤容限性能试验[J]. 航空学报201738(1): 420093.
  CHEN A, WEI Y L, LIAO J H, et al. Damage tolerance test of stiffened fuselage panel under complex load[J]. Acta Aeronautica et Astronautica Sinica201738(1): 420093 (in Chinese).
13 臧伟峰,董登科,王俊安.一种大型机身壁板复杂载荷静力/疲劳试验装置:CN103149075A[P].2015-01-28.
  ZANG W F, DONG D K, WANG J A. A static/fatigue test fixture for complex load of large fuselage panel: CN103149075A[P].2015-01-28 (in Chinese).
  臧伟锋, 张海英, 陈安, 等. 一种机身壁板剪切载荷试验装置: CN114705565A[P]. 2022-07-05.
  ZANG W F, ZHANG H Y, CHEN A, et al. Fuselage wallboard shear load test device: CN114705565A[P]. 2022-07-05 (in Chinese).
14 柴亚南, 邓凡臣, 李崇, 等. 一种机身壁板复合载荷试验装置: CN104807694B[P]. 2018-01-30.
  NAN C Y, DENG F C, LI C, et al. Fuselage panel combined load test device: CN104807694B[P]. 2018-01-30 (in Chinese).
15 邓凡臣,柴亚南,薛会民,等.大型飞机机身曲板多轴载荷试验技术研究[J].实验力学201833(3):484-490.
  DENG F C, CHAI Y N, XUE H M,et al.On the experimental technique for large aircraft fuselage curved panel subjected to multiaxial loading[J].Journal of Experimental Mechanics201833(3): 484-490 (in Chinese).
16 中国飞机强度研究所.一种曲板直边约束加载装置:CN202010554450.0[P]. 2020-10-13.
  Aircraft Strength Research Institute of China.A loading device with straight edge constraint for curved panel:CN202010554450.0[P]. 2020-10-13 (in Chinese).
17 李崇, 柴亚南, 王彬文, 等. 大型机身壁板复杂应力场试验技术[J]. 航空学报202243(6): 526409.
  LI C, CHAI Y N, WANG B W, et al. Test technology for complex stress field of large scale fuselage panel[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526409 (in Chinese).
18 郭瑜超, 孙喜桂, 王立凯, 等. 一种曲板试验载荷计算方法: CN110135044A[P]. 2019-08-16.
  GUO Y C, SUN X G, WANG L K, et al. Curved plate test load calculation method: CN110135044A[P]. 2019-08-16 (in Chinese).
19 赵鑫, 郑晓玲. 复合材料机身大开口壁板静力试验载荷设计[J]. 机械设计与制造工程202150(9): 58-62.
  ZHAO X, ZHENG X L. Load design for static test of the composite fuselage panel[J]. Machine Design and Manufacturing Engineering202150(9): 58-62 (in Chinese).
20 王彬文, 段世慧, 聂小华, 等. 航空结构分析CAE软件发展现状与未来挑战[J]. 航空学报202243(6): 527272.
  WANG B W, DUAN S H, NIE X H, et al. Development situation and future challenges of CAE software used in aeronautical structural analysis[J]. Acta Aeronautica et Astronautica Sinica202243(6): 527272 (in Chinese).
21 何坚勇. 最优化方法[M]. 北京: 清华大学出版社, 2007: 318-323.
  HE J Y. Optimization method[M]. Beijing: Tsinghua University Press, 2007: 318-323 (in Chinese).
22 陈宝林. 最优化理论与算法[M]. 2版. 北京: 清华大学出版社, 2005: 76-81.
  CHEN B L. Optimization theory and algorithm[M]. 2nd ed. Beijing: Tsinghua University Press, 2005: 76-81 (in Chinese).
23 唐焕文, 秦学志. 实用最优化方法[M]. 3版. 大连: 大连理工大学出版社, 2004: 89-92.
  TANG H W, QIN X Z. Practical methods of optimization[M]. 3rd ed. Dalian: Dalian University of Technology Press, 2004: 89-92 (Chinese).
24 郭瑜超, 聂小华, 张生贵, 等. 航空结构仿真与试验应变一致性评估方法[J]. 机械强度202042(1): 246-250.
  GUO Y C, NIE X H, ZHANG S G, et al. Consistency evaluation of the aircraft structural simulation and test[J]. Journal of Mechanical Strength202042(1): 246-250 (in Chinese).
Outlines

/