Electronics and Electrical Engineering and Control

Optimal thrust conditions and guidance for Mars solid ascent vehicles

  • Qian ZHANG ,
  • Yuanxin YANG ,
  • Shuo TANG ,
  • Xianghang YUE ,
  • Zhi XU
Expand
  • 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Shaanxi Aerospace Flight Vehicle Design Key Laboratory,Xi’an 710072,China
E-mail: xuzhi@nwpu.edu.cn

Received date: 2022-10-20

  Revised date: 2022-11-16

  Accepted date: 2022-12-07

  Online published: 2022-12-14

Supported by

China Postdoctoral Science Foundation(2022M712588);Natural Science Basis Research Program of Shaanxi(2022JQ-061)

Abstract

The two-stage solid ascent vehicle is an important part of the large-scale Mars sample recovery program. To address the problems of the optimal thrust design and the depleted shutdown guidance with multi-constraints for solid Mars ascent vehicles in sample return missions, an analytical-numerical fusion method for optimization of the orbit entry phase is proposed, in which the analytical optimization method provides the theoretical basis for the optimal design of the solid thrust, and the numerical optimization method further solves the problem of depleted shutdown guidance faced in the actual flight in the proximity of the theoretically optimal solution. Firstly, to analyze and optimize the thrust parameters of the solid ascent vehicles under the maximum load mass, the problem of optimal control of the thrust direction is constructed based on the Pontryagin maximum principle. A new necessary condition of the optimal thrust parameters is derived to eliminate the costate multiplier vector, so that the analytical expression of the optimal control commands is obtained. Secondly, considering the parameter deviation and uncertainty interference of the ascent vehicles under actual flight conditions, a quadratic numerical optimization method combining the optimal analytical solution sequence is proposed to guide the Mars ascent vehicle to the predetermined target orbit with high accuracy in the depleted shutdown mode, which can quickly calculate the flight commands online by the efficient inverse recursive sensitivity matrix. Finally, a comparison with the GPOPS optimization method verifies the optimality and correctness of the proposed analytical expression. The optimal thrust scheme of Mars ascent vehicles is also given. The numerical simulation results demonstrate that the Mars ascent vehicle can enter the target orbit with high accuracy in the depleted shutdown mode with the interference of deviation and uncertainties by the proposed method.

Cite this article

Qian ZHANG , Yuanxin YANG , Shuo TANG , Xianghang YUE , Zhi XU . Optimal thrust conditions and guidance for Mars solid ascent vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(17) : 328155 -328155 . DOI: 10.7527/S1000-6893.2022.28155

References

1 SEPHTON M A, CARTER J N. The chances of detecting life on Mars[J]. Planetary and Space Science2015112: 15-22.
2 马广富, 龚有敏, 郭延宁, 等. 载人火星探测进展及其EDL过程GNC关键技术[J]. 航空学报202041(7): 023651.
  MA G F, GONG Y M, GUO Y N, et al. Human Mars mission: Research progress and GNC key technologies during EDL[J]. Acta Aeronautica et Astronautica Sinica202041(7): 023651 (in Chinese).
3 YAGHOUBI D, MA P. Integrated design results for the MSR DAC-0.0 Mars ascent vehicle[C]∥2021 IEEE Aerospace Conference. 2021: 1-17.
4 YAGHOUBI D, SCHNELL A. Mars ascent vehicle hybrid propulsion configuration[C]∥2020 IEEE Aerospace Conference. 2020: 1-11.
5 YAGHOUBI D, SCHNELL A. Mars ascent vehicle solid propulsion configuration[C]∥2020 IEEE Aerospace Conference. 2020: 1-11.
6 XU Z, ZHANG Q. Multi-constrained ascent guidance for solid propellant launch vehicles[J]. Aerospace Science and Technology201876: 260-271.
7 郝泽明, 张冉, 王嘉炜, 等. 大气层内固体火箭实时轨迹优化方法[J]. 宇航学报202142(11): 1416-1426.
  HAO Z M, ZHANG R, WANG J W, et al. Real time atmospheric trajectory optimization for solid rockets[J]. Journal of Astronautics202142(11): 1416-1426 (in Chinese).
8 张志健, 王小虎. 固体火箭多约束耗尽关机的动态逆能量管理方法[J]. 固体火箭技术201437(4): 435-441, 462.
  ZHANG Z J, WANG X H. Inverse dynamic energy management for multi-constrained depleted shutdown of solid rocket[J]. Journal of Solid Rocket Technology201437(04): 435-441, 462 (in Chinese).
9 徐衡, 陈万春. 满足多约束的主动段能量管理制导方法[J]. 北京航空航天大学学报201238(5): 569-573.
  XU H, CHEN W C. Energy management ascent guidance algorithm with multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics201238(5): 569-573 (in Chinese).
10 BRYSON A E, HO Y C. Applied optimal control[M]. Washington: Hemisphere Publishing Corporation, 1975: 366-367.
11 CONWAY B A. Spacecraft trajectory optimization[M]. Cambridge: Cambridge University Press, 2010: 323.
12 陈新民, 余梦伦. 迭代制导在运载火箭上的应用研究[J]. 宇航学报2003(5): 484-489, 501.
  CHEN X M, YU M L. Study of iterative guidance application to launch vehicles[J]. Journal of Astronautics2003(5): 484-489, 501 (in Chinese).
13 PAUL V D P, AHMAD N, HAWKINS M, et al. Powered explicit guidance modifications and enhancements for space launch system block-1 and block-1B vehicles[C]∥The 41st AAS Guidance, Navigation, and Control Conference. 2018: 1041-1052.
14 茹家欣. 液体运载火箭的一种迭代制导方法[J]. 中国科学: 技术科学200939(4): 696-706.
  RU J X. An iterative guidance method for liquid launch vehicles[J]. Science in China: Technological Sciences200939(4): 696-706 (in Chinese).
15 赵吉松, 谷良贤, 潘雷. 月球最优软着陆两点边值问题的数值解法[J]. 中国空间科学技术200929(4): 21-27.
  ZHAO J S, GU L X, PAN L. Numerical solution of TPBVP for optimal lunar soft landing[J]. Chinese Space Science and Technology200929(4): 21-27 (in Chinese).
16 YAN H, WU H. Initial adjoint-variable guess technique and its application in optimal orbital transfer[J]. Journal of Guidance, Control, and Dynamics201222(3): 490-492.
17 刘玥, 荆武兴. 利用虚拟卫星法求解火星探测器近火点制动策略[J]. 哈尔滨工业大学学报201345(1): 14-18.
  LIU Y, JING W X. Mars probe near-center braking strategy using virtual satellite method[J]. Journal of Harbin Institute of Technology201345(1): 14-18 (in Chinese).
18 LU P, GRIFFIN B J, DUKEMAN G A, et al. Rapid optimal multiburn ascent planning and guidance[J]. Journal of Guidance, Control, and Dynamics200831: 1656-1664.
19 LU P, PAN B F. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance, Control, and Dynamics201033(2): 404-414.
20 PAN B F, PAN X, MA Y Y. A quadratic homotopy method for fuel-optimal low-thrust trajectory design[J]. Journal of Aerospace Engineering2019233(5): 1741-1757.
21 王嘉炜,张冉,郝泽明,等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报202041(11): 624051.
  WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica202041(11): 624051 (in Chinese).
22 VUTUKURI S, PADHI R. An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbits[J]. Acta Astronautica2021188: 518-530.
23 崔乃刚, 郭冬子, 李坤原, 等. 飞行器轨迹优化数值解法综述[J]. 战术导弹技术2020(5): 37-51, 75.
  CUI N G, GUO D Z, LI K Y, et al. A survey of numerical methods for aircraft trajectory optimization[J]. Tactical Missile Technology2020(5): 37-51,75 (in Chinese).
24 LAAD D, ELANGO P, MOHAN R. Fourier pseudospectral method for trajectory optimization with stability requirements[J]. Journal of Guidance, Control, and Dynamics202043: 2073-2090.
25 MAO Y Q, SZMUK M, ACIKMESE B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥2016 IEEE 55th Conference on Decision and Control. 2016: 3636-3641.
26 SARMAH P, CHAWLA C, PADHI R. A nonlinear approach for reentry guidance of reusable launch vehicles using model predictive static programming[C]∥2008 16th Mediterranean Conference on Control and Automation. 2008: 41-46.
27 MAITY A, PADHI R. A suboptimal guidance design using continuous-time MPSP with input inequality constraint in a hypersonic mission[C]∥18th IFAC Symposium on Automatic Control in Aerospace 2010. 2010: 160-165.
28 MAITY A, OZA H B, PADHI R. Generalized model predictive static programming and its application to 3D impact angle constrained guidance of air-to-surface missiles[C]∥2013 American Control Conference. 2013: 4999-5004.
29 MONDAL S, PADHI R. Angle-constrained terminal guidance using quasi-spectral model predictive static programming[J]. Journal of Guidance, Control, and Dynamics201841: 783-791.
30 杨彬, 李爽, 刘旭, 等. 高精度火星大气制动轨迹智能高效优化方法[J]. 中国科学: 技术科学202050(9): 1185-1199.
  YANG B, LI S, LIU X, et al. Fast optimization method for mars high-fidelity aerobraking trajectory using a neural network[J]. SCIENTIA SINICA Technologica202050(9): 1185-1199 (in Chinese).
31 邓云山, 夏元清, 孙中奇, 等. 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报202142(11): 524834.
  DENG Y S, XIA Y Q, SUN Z Q, et al. Autonomous trajectory planning method for Mars precise landing in disturbed environment[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524834 (in Chinese).
32 丰志伟, 张青斌, 高兴龙, 等. 火星探测器气动外形/弹道一体化多目标优化[J]. 航空学报201435(9): 2461-2471.
  FENG Z W, ZHANG Q B, GAO X L, et al. Aerodynamic shape and trajectory integrated multiobjective optimization for Mars explorer[J]. Acta Aeronautica et Astronautica Sinica201435(9): 2461-2471 (in Chinese).
33 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙: 国防科技大学出版社, 1993: 229-233.
  JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha: National University of Defense Technology Press, 1993: 229-233 (in Chinese).
34 CERF M. Optimal injection point for launch trajectories with parametric thrust profile[J]. Acta Astronaut2018151: 752-760.
35 CURTIS H. Orbital mechanics for engineering students[M]. Oxford: Butterworth-Heinemann, 2014: 111-123.
36 CERF M. Optimal thrust level for orbit insertion[J]. Acta Astronaut2017136: 55-63.
37 PATTERSON M A, RAO A V. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software201441(1): 1-37.
Outlines

/