Special Topic: Reusable Launch Vehicle Technology

Reusable technology of air⁃launched launch vehicle

  • Yan LYU ,
  • Lin LIU ,
  • Guangyong ZHANG ,
  • Lei LIANG ,
  • Xuesheng ZHENG
Expand
  • Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China
E-mail: lvyan20090@163.cn

Received date: 2022-10-08

  Revised date: 2022-11-25

  Accepted date: 2022-12-05

  Online published: 2022-12-14

Abstract

The application of vertical recovery technology to air-launched launch vehicles causes insufficient carrying capacity, and the current launch schemes are not conducive to full utilization of the launch platforms’ performance as a zero-stage reusable power. Given these two problems, the application of reusable technology to and its effect on air-launched launch vehicles are studied from the aspects of the recovery method of the first-stage booster and launch schemes of the launch platforms. Firstly, combined with the force characteristics analysis of the approximate horizontal launch of the air-launched launch vehicles, the design method of the orbital flight program angle and the trajectory optimization methods are derived, the recovery method of the first-stage booster for the reuse of the air rudders is proposed, and the aerodynamic characteristics analysis and guidance control method of the recovery flight section are analyzed. Then, two launch schemes are proposed. One is a combined power high-altitude unmanned aerial vehicle and the other is a reusable unmanned platform propelled by a subsonic aircraft. Finally, the orbit design parameters and the mathematical simulation results of the first-stage booster’s reusable section are presented with a typical air-launched launch vehicle configuration to quantitatively analyze the contribution of the first-stage booster recovery and the two new launch schemes in terms of carrying efficiency into the orbit and economic cost.

Cite this article

Yan LYU , Lin LIU , Guangyong ZHANG , Lei LIANG , Xuesheng ZHENG . Reusable technology of air⁃launched launch vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(23) : 628083 -628083 . DOI: 10.7527/S1000-6893.2022.28083

References

1 SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G, et al. Gravity air launching of earth-to-orbit space vehicles[C]∥ Proceedings of the Space 2006. Reston: AIAA, 2006.
2 MARTI S. A study of air lunch methods for RLVs: AIAA-2001-4619[R]. Reston: AIAA, 2001.
3 Orbit Sciences Corporation. Pegasus user’s guide[EB/OL]. (2014-03-17)[2022-07-05]. .
4 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报202142(11): 525050.
  SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525050 (in Chinese).
5 鲁宇, 汪小卫, 高朝辉, 等. 重复使用运载火箭技术进展与展望[J]. 导弹与航天运载技术2017(5): 1-7.
  LU Y, WANG X W, GAO C H, et al. Progress and prospect of reusable launch vehicle technology[J]. Missiles and Space Vehicles2017(5): 1-7 (in Chinese).
6 Space Exploration Technologies Corporation. FALCON launch vehicle payload user’s guide[EB/OL]. (2021-09-25)[2022-07-01]. .
7 SHEETZ M, MUSK E. Touts low cost to insure SpaceX rockets as an edge over competitors[EB/OL]. (2020-04-16)[2022-07-30]. .
8 MCDOWELL J C. The low earth orbit satellite population and impacts of the SpaceX starlink constellation[J]. The Astrophysical Journal Letters2020892(2): L36.
9 lab Rocket. Payload user guide launch[EB/OL]. (2020-11)[2022-07-30]. .
10 Lab Rocket. Plans to snag falling boosters with a helicopter and refly them[EB/OL]. (2019-08-06)[2022-07-05]. .
11 HOWELL E. Watch Rocket lab catch a falling booster with a helicopter[EB/OL]. (2022-05-13)[2022-07-30]. .
12 ADAM L. Just add sun: the story of the 40th flight of Pegasus: AIAA-2009-1001 [R]. Reston: AIAA, 2009.
13 GALACTIC V. Launcher one service guide[M]. Long Beach, CA: Virgin Galactic LLC, 2020.
14 SARIGUL-KLIJN M, SARIGUL-KLIJN N, HUDSON G, et al. Selection of a carrier aircraft and a launch method for air launching space vehicles[C]∥ AIAA SPACE 2008 Conference & Exposition. Reston: AIAA, 2008.
15 林一平. L?1011与空射型火箭的载挂技术[J]. 中国航天1995(7): 23-25.
  LIN Y P. Loading and hanging technology of L-1011 and air-launched rocket[J]. Aerospace China1995(7): 23-25 (in Chinese).
16 CORDA S, LONGO C, KREVOR Z. Stratolaunch air-launched hypersonic testbed[C]∥ 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2018.
17 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙: 国防科技大学出版社, 1993: 23-78.
  JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha: National University of Defense Technology Press, 1993: 23-78 (in Chinese).
18 MASASHI M. State estimation and quick trajectory optimization for air-launch rocket[C]∥ IFAC 18th Symposium on Aeronautic Control in Aerospace. Nara: IFAC, 2010.
19 吕艳, 张广勇, 郑新, 等. 一种空射火箭沿空速投放偏航角设计方法[J]. 弹箭与制导学报202141(5): 91-94, 99.
  LYU Y, ZHANG G Y, ZHENG X, et al. A design method of yaw angel for air-launched vehicle launching azimuth pointing to airspeed[J]. Journal of Projectiles, Rockets, Missiles and Guidance202141(5): 91-94, 99 (in Chinese).
20 TODD H G. Advancement and analysis of a gauss pseudospectral transcription for optimal control problems[D]. Cambridge: Massachusetts Institute of Technology, 2007: 23-32.
21 DARBY C L, HAGER W W, RAO A V. An hp-adaptive pseudospectral method for solving optimal control problems[J]. Optimal Control Applications and Methods201132(4): 476-502.
22 钱杏芳. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2006: 95-111.
  QIAN X F, et al. Missile flight dynamics [M]. Beijing: Beijing Institute of Technology Press, 2006: 95-111 (in Chinese).
23 龙乐豪. 总体设计(上)[M]. 北京: 宇航出版社, 1989: 284-466.
  LONG L H. System design(I)[M]. Beijing: Astronautics Press, 1989: 284-466 (in Chinese).
24 徐延万. 控制系统[M]. 北京: 宇航出版社, 1989: 29-185.
  XU Y W. Control system[M]. Beijing: Astronautics Press, 1989: 29-185 (in Chinese).
25 王小军. 中国商业航天的发展与未来[J]. 导弹与航天运载技术2020(1): 1-6.
  WANG X J. The development and future of China’s commercial aerospace[J]. Missiles and Space Vehicles2020(1): 1-6 (in Chinese).
26 科轩. 快舟一号甲成功发射“一箭三星” 开启中国商业航天新时代[J]. 中国航天2017(1): 23-24.
  KE X. Fast Boat No.1 successfully launched “One Arrow Three Stars” to open a new era of commercial aerospace in China[J]. Aerospace China2017(1): 23-24 (in Chinese).
Outlines

/