In this paper, the Reynold-Averaged Navier-Stokes (RANS) method is combined with the γ-Reθ transition model based on local variables to investigate the transonic laminar flow characteristics and parameter sensitivity of a specially designed aircraft with laminar wing section. The RANS-based transition prediction method is validated and analyzed by the transition prediction of the DLR F-5 three-dimensional wing. The simulation results of the laminar wing section of the aircraft are compared with the corresponding experimental data, with the pressure distribution and transition location on the upper surface both showing good agreement with each other; thus proving the applicability of the calculation method proposed in this paper. This article mainly focuses on the aerodynamic characteristics of the whole aircraft in the cruise state, and the transition location and the length of the laminar flow zone on the upper surface of the middle laminar wing section under different flight conditions. According to the calculation results, the influence of laminar flow on the lift, drag and moment of the whole aircraft are further analyzed. The influence of key flow parameters such as Mach number, Reynolds number, freestream turbulence intensity and angle of attack on the transition position of the wing section surface are summarized. The results demonstrate that the transition position on the surface of the middle laminar wing section is impacted significantly by the Mach number, Reynolds number, turbulence intensity and angle of attack of the free stream. The increase of the Mach number will cause a great change in the pressure distribution, and make the transition position move forward and backward. The increase of the Reynolds number by the same amplitude will make the transition position move forward regularly. The increase in the turbulence intensity and angle of attack of the freestream will directly lead to the occurrence of an early transition, and the length of the laminar flow zone will be significantly reduced gradually.
NIU Xiaotian
,
LI Jie
,
ZHOU Zhipeng
,
YANG Zhao
,
CHANG Mochen
. Sensitivity analysis of transonic laminar flow characteristics of an aircraft with laminar wing section[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022
, 43(11)
: 526771
-526771
.
DOI: 10.7527/S1000-6893.2021.26771
[1] 《飞机设计手册》总编委会. 飞机设计手册(第6册):气动设计[M]. 北京:国防工业出版社, 2002:252-322. General Editorial Board of Aircraft Design Manual. Air craft design manual (Volume 6):Aerodynamic design[M]. Beijing:National Defense Industry Press, 2002:252-322.
[2] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学试验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese).
[3] LEE J D, JAMESON A. NLF airfoil and wing design by adjoint method and automatic transition prediction[C]//27th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2009.
[4] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997. FANG B R. Aerodynamic layout design of aircraft[M]. Beijing:Aviation Industry Press, 1997(in Chinese).
[5] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese).
[6] 杨青真, 张仲寅. 超临界层流机翼边界层及气动特性分析[J]. 航空学报, 2004, 25(5):438-442. YANG Q Z, ZHANG Z Y. Analysis of the boundary layer and aerodynamic characteristics of a supercritical laminar wing[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):438-442(in Chinese).
[7] CAMERON L, EARLY J, MCROBERTS R. Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011.
[8] 赖国俊, 李政德, 张颖哲. 自然层流翼型高雷诺数风洞试验研究[J]. 航空科学技术, 2017, 28(8):12-15. LAI G J, LI Z D, ZHANG Y Z.Research on natural laminar airfoil wind tunnel test at high Reynolds number[J]. Aeronautical Science & Technology, 2017, 28(8):12-15(in Chinese).
[9] STREIT T, HORSTMANN K, SCHRAUF G, et al. Complementary numerical and experimental data analysis of the ETW telfona pathfinder wing transition tests[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[10] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91.
[11] KRUSE M, WUNDERLICH T, HEINRICH L. A conceptual study of a transonic NLF transport aircraft with forward swept wings[C]//30th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2012.
[12] EPPINK J, WLEZIEN R. Data analysis for the NASA/boeing hybrid laminar flow control crossflow experiment[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2011.
[13] FAUCI R, NICOLÌ A, IMPERATORE B, et al. Wind tunnel tests of a transonic natural laminar flow wing[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA, 2006.
[14] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.
[15] FUJINO M. Design and development of the HondaJet[J]. Journal of Aircraft, 2005, 42(3):755-764.
[16] ZHU W K, CHEN X, ZHU Y D, et al. Nonlinear interactions in the hypersonic boundary layer on the permeable wall[J]. Physics of Fluids, 2020, 32(10):104110.
[17] ZHU W K, SHI M T, ZHU Y D, et al. Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone[J]. Physics of Fluids, 2020, 32(1):011701.
[18] 张坤, 宋文萍. eN方法在无限展长后掠翼边界层转捩判断中的初步应用[J]. 西北工业大学学报, 2011, 29(1):142-147. ZHANG K, SONG W P.Application of the full eN transition method to the infinite swept-wing's transition prediction[J]. Journal of Northwestern Polytechnical University, 2011, 29(1):142-147(in Chinese).
[19] 朱震, 宋文萍, 韩忠华. 基于双eN方法的翼身组合体流动转捩自动判断[J]. 航空学报, 2018, 39(2):121707. ZHUZ, SONG W P, HAN Z H. Automatic transition prediction for wing-body configurations using dual eN method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2):121707(in Chinese).
[20] 牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J]. 空气动力学学报, 2013, 31(1):103-109. MOU B, JIANG X, XIAO Z Y,et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2013, 31(1):103-109(in Chinese).
[21] 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4):1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1092-1102(in Chinese).
[22] 阎超, 钱翼稷, 连祺祥. 粘性流体力学[M]. 北京:北京航空航天大学出版社, 2005:45-66. YAN C, QIAN Y J, LIAN Q X. Viscous fluid mechanics[M]. Beijing:Beijing University of Aeronautics & Astronautics Press, 2005:45-66(in Chinese).
[23] 史里希廷. 边界层理论-下册[M]. 徐燕侯等, 译. 北京:科学出版社, 1991:18-25. SCHLICHTING H. Boundary-layer theory[M]. XU H Y, translated. Beijing:Science Press, 1991:18-25.
[24] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal. 1994, 32(8):1598-1605.
[25] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA Journal. 2009, 47(12):2894-2906.