Influence of physical and chemical models on electromagnetic wave propagation characteristics of flow field

  • Deyang TIAN ,
  • Yi PING ,
  • Yesi CHEN ,
  • Weifang CHEN
Expand
  • 1.Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China
E-mail: chenwfnudt@163.com

Received date: 2022-07-06

  Revised date: 2022-07-27

  Accepted date: 2022-08-23

  Online published: 2022-09-13

Supported by

National Natural Science Foundation of China(U20B2007)

Abstract

Based on the steady state and dynamic plasma flow field data of hypersonic HTV-2 like vehicle calculated by considering different chemical reaction kinetic models and turbulence models, by using ADE-FDTD method, the difference of electromagnetic wave propagation characteristics of plasma flow field calculated by different physicochemical models is analyzed. In chemical models, the higher the temperature is, the stronger the chemical reaction will be, the higher the predicted electron number density will be, and the higher the plasma frequency and plasma collision frequency will be. As a result, the transmission coefficient of Park model, Gupta model and D&K model increases from small to large, and the attenuation coefficient is vice versa. In the turbulence model, the transmission coefficients of DDES model, DES model and Laminar model change from small to large due to the different electron number densities calculated by each model, while the attenuation coefficients is vice versa. By comparison, the chemical physics models suitable for the numerical simulation of hypersonic plasma flow field are the 7-component Gupta chemical reaction kinetic model and DDES model, which provide a theoretical basis for solving the black barrier problem and realizing reliable communication.

Cite this article

Deyang TIAN , Yi PING , Yesi CHEN , Weifang CHEN . Influence of physical and chemical models on electromagnetic wave propagation characteristics of flow field[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S2) : 214 -224 . DOI: 10.7527/S1000-6893.2022.27772

References

1 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.
  CHEN J Z, HU G D, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese).
2 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
  ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica,2022,43(3): 025027 (in Chinese).
3 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报,2022,43(1): 62592.
  SHI X T, LV M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1): 62592 (in Chinese).
4 高铁锁, 董维中, 丁明松, 等. 物理化学模型对高温流场等离子体分布的影响[J]. 空气动力学学报,2013,31(5): 541-545, 553.
  GAO T S, DONG W Z, DING M S, et al. The effects of physicochemical models on distribution of plasma in high temperature flowfield[J]. Acta Aerodynamica Sinica, 2013,31(5): 541-545, 553 (in Chinese).
5 邵纯. 临近空间高超声速飞行器等离子鞘套理论建模与数值模拟[D]. 杭州:浙江大学,2016: 4-169.
  SHAO C. The theoretical modeling and numerical simulation of plasma sheaths for near space hypersonic vehicles[D]. Hangzhou: Zhejiang University, 2016: 4-169 (in Chinese).
6 吴祥东, 车学科, 狄辉, 等. 再入航天器周围等离子体分布特征研究[J]. 机电产品开发与创新,2021,34(5): 100-104.
  WU X D, CHE X K, DI H, et al. Research on characteristics of plasma distribution around reentry spacecraft[J]. Development & Innovation of Machinery & Electrical Products, 2021, 34(5): 100-104 (in Chinese).
7 刘江帆. 等离子鞘套中电波传播的算法研究 [D]. 西安:西安理工大学,2009: 21-26.
  LIU J F. The algorithmic research on propagation of electromagnetic wave in plasma sheath [D]. Xi’an: Xi’an University of Technology, 2009: 21-26 (in Chinese).
8 LIU S B, MO J J, YUAN N C. FDTD simulation of electromagnetic reflection of conductive plane covered with imhomogeneous time-varying plasma [J]. International Journal of Infrared and Millimeter Waves, 2002, 23(8): 1179-1191.
9 殷雄, 张厚. 高超声速钝锥等离子体鞘套电波传播特性研究 [J]. 装备环境工程, 2015, 12(6): 10-19.
  YIN X, ZHANG H. EM wave propagation characteristics in plasma sheath of hypersonic reentry blunted cone body [J]. Equipment Environmental Engineering, 2015, 12(6): 10-19 (in Chinese).
10 奚衍斌. 高频电磁波在几类等离子体层中传播特性研究 [D]. 大连: 大连理工大学, 2013: 10-23.
  XI Y B. Study on propagating character of high frequency EM waves in several types of plasma layers [D]. Dalian: Dalian University of Technology, 2013: 10-23 (in Chinese).
11 王慧慧. 碰撞等离子体中电磁波传播及微探针研究 [D]. 合肥: 中国科学技术大学, 2009: 23-61.
  WANG H H. The research of electromagnetic wave propagation in collisional plasma and microwave probe diagnostic technique[D]. Hefei: University of Science and Technology of China, 2009: 23-61 (in Chinese).
12 杨利霞, 于萍萍, 马辉, 等. 瞬变等离子体中电磁波频率漂移特性研究 [J]. 电波科学学报,2012, 27(1): 18-23.
  YANG L X, YU P P, MA H, et al. Frequency drifts characteristics for electromagnetic wave in suddenly creation plasma [J]. Chinese Journal of Radio Science, 2012, 27(1): 18-23 (in Chinese).
13 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究 [J]. 物理学报, 2013,62(10): 117-122.
  YANG L X, SHEN D H, SHI W D. Analyses of electromagnetic scattering characteristics for 3D time-varying plasma medium [J]. Acta Physica Sinica, 2013, 62(10): 117-122 (in Chinese).
14 GUO L X, GUO L J. The effect of the inhomogeneous collision frequency on the absorption of electromagnetic waves in a magnetized plasma [J]. Physics of Plasmas, 2017, 24(11): 112119.
15 GUO L J, GUO L X, LI J T. Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency [J]. Physics of Plasmas, 2017, 24(2): 1-7.
16 欧阳文冲. 高超声速等离子体流场及电磁波传播特性数值模拟[D]. 西安:西安电子科技大学,2020: 5-63.
  OUYANG W C. Numerical simulation of hypersonic plasma flow field and electromagnetic wave propagation characteristics[D]. Xi’an: Xidian University, 2020: 5-63 (in Chinese).
17 马昕. 磁场调控下髙超声速等离子体流场及电磁波传播的数值模拟[D].西安:西安电子科技大学,2021: 9-64.
  MA X. Numerical simulation of hypersonic plasma flowfield and electromagnetic wave propagation with magnetic interference[D]. Xi’an: Xidian University, 2021: 9-64 (in Chinese).
18 刘德. 电磁波在等离子鞘套中的传播与散射相关问题研究[D]. 西安: 西安电子科技大学,2015: 4-5, 19-28.
  LIU D. Electromagnetic wave propagation and scattering in plasma sheath[D]. Xi’an: Xidian University, 2015: 4-5, 19-28 (in Chinese).
19 YEE K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas & Propagation, 1966, 14(5): 302-307.
20 孙凤杰, 周启明. 时域有限差分(FDTD)法发展综述[C]∥2009系统仿真技术及其应用学术会议论文集, 2009: 100-104.
  SUN F J, ZHOU Q M. A summary of FDTD research and development at home and abroad[C]∥SSTA’2009 and Its Application, 2009: 100-104 (in Chinese).
21 杨阳. 电磁场时域有限差分数值方法的研究[D]. 南京: 南京理工大学, 2005: 1-2.
  YANG Y. The research on the finite difference time domain methods in the electromagnetic fields [D]. Nanjing: Nanjing University of Science and Technology, 2005: 1-2 (in Chinese).
22 王向华. 单步无条件稳定时域有限差分方法及其在复杂电磁结构数值仿真中的应用研究[D].杭州: 浙江大学,2015: 129.
  WANG X H. Leapfrog ADI-FDTD and its applications on numerical simulation of complex electromagnetic structures[D]. Hangzhou: Zhejiang University, 2015: 129 (in Chinese).
23 刘江凡, 席晓莉, 柳杨. 等离子体鞘套中电磁波传播特性的ADE-FDTD计算[C]∥2009年全国天线年会论文集(下), 2009: 4.
  LIU J F, XI X L, LIU Y. Calculation of propagation characteristics of electromagnetic wave in plasma sheath using ADE-FDTD method[C]∥Proceedings of 2009 National antenna Annual Conference (Part 2), 2009: 4 (in Chinese).
24 TIAN D Y, FAN G C, CHEN W F. Numerical investigation of dynamic properties of plasma sheath with pitching motion[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2020, 21(3): 209-217.
25 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹,2013(6): 7-13.
  ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Aerodynamic Missile Journal, 2013(6): 7-13 (in Chinese).
26 马平, 石安华, 韩冬, 等. 基于弹道靶的球模型及其流场的光辐射和电磁散射特性测量[C]∥第十四届全国物理力学学术会议缩编文集, 2016: 247.
  MA P, SHI A H, HAN D, et al. Measurement of light radiation and electromagnetic scattering characteristics of spherical model and its flow field based on ballistic target[C]∥ Condensed Collection of the 14th National Conference on Physical Mechanics, 2016: 247 (in Chinese).
Outlines

/