ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Unsupported sensing technology of on⁃orbit vibration measurement of flexible spacecraft solar array
Received date: 2022-06-20
Revised date: 2022-07-11
Accepted date: 2022-09-01
Online published: 2022-09-13
Supported by
National Key Research and Development Program(2021YFB3203100)
Based on the self-powered wireless accelerometers network, on-orbit flexible vibration measurement and parameter identification tests for the large solar array are carried out in the Tianhe core module and Wentian laboratory module of China space station in May 2021 and July 2022, respectively. Based on the requirements of the missions, the core capabilities of the unsupported sensing technology in the space exploration mission are summarized in this paper, including self-power supply and self-charging, data transmitted between unsupported sensors, highly reliable data acquisition, high-precision time synchronization, and autonomous sleep wake-up. The design ideas and implementation schemes of the above capabilities are described in detail, and the actual verification results of the unsupported sensor in the space station solar array vibration measurement task are given. On-orbit test results demonstrate the effectiveness and rationality of the proposed strategies.
Yan LANG , He LIANG , Li YUAN , Jinjiang ZHANG , Chaoli GUO , Guoqi ZHANG , Tao YIN . Unsupported sensing technology of on⁃orbit vibration measurement of flexible spacecraft solar array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(10) : 327644 -327644 . DOI: 10.7527/S1000-6893.2022.27644
1 | 屠善澄. 卫星姿态动力学与控制-1[M]. 北京: 宇航出版社, 1999: 162-163. |
TU S C. Satellite attitude dynamics and control-1[M]. Beijing: China Aerospace Press, 1999: 162-163 (in Chinese). | |
2 | 刘伦. 航天器姿态运动与太阳翼结构振动耦合分析及协同控制[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-16, 75-116. |
LIU L. Coupled analysis and cooperative control for spacecraft attitude motion and solar panel vibration[D]. Harbin: Harbin Institute of Technology, 2017: 1-16, 75-116 (in Chinese). | |
3 | 谢永. 航天器挠性参数的在轨辨识与模型修正[D]. 上海: 上海交通大学, 2016: 1-15. |
XIE Y. On-orbit parameter identification and model updating of spacecraft[D]. Shanghai: Shanghai Jiao Tong University, 2016: 1-15 (in Chinese). | |
4 | 郎燕, 于丹, 刘鹏. 航天器大型柔性太阳翼挠性形变视觉测量优化设计[J]. 载人航天, 2016, 22(6): 781-787. |
LANG Y, YU D, LIU P. Optimization design of on-orbit vision measurement in spacecraft large flexible solar arrays deformation[J]. Manned Spaceflight, 2016, 22(6): 781-787 (in Chinese). | |
5 | 谢永, 刘盼, 蔡国平. 基于加速度信号的柔性板的挠性参数辨识[J]. 力学学报, 2014, 46(1): 128-135. |
XIE Y, LIU P, CAI G P. Parameter identification of flexible plate based on the acceleration output[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 128-135 (in Chinese). | |
6 | SAPP C A, DRAGG J L, SNYDER M W, et al. Photogrammetric assessment of the Hubble space telescope solar arrays during the second servicing mission: NASA/TP-98-201793 [R]. Washington, D.C.: NASA, 1998. |
7 | ANTHONY T, ANDERSEN G. On-orbit modal identification of the Hubble space telescope[C]∥Proceedings of 1995 American Control Conference - ACC’95. Piscataway: IEEE Press, 2002: 402-406. |
8 | KIM H M, KAOUK M. Mir structural dynamics experiment: First test and model refinement[C]∥Proceedings of the 40th Sustainable Design and Manufacturing Conference,Reston: AIAA, 1999. |
9 | KAOUK M, MCNEILL S, HALEY S,et al. Shuttle-ISS flight-7A on orbit test verification: Pre and post flight analysis[R]. Washington: Society for Experimental Mechanics, The Boeing Company, 2003. |
10 | ADACHI S, YAMAGUCHI I. On-orbit system identification experiments on Engineering Test Satellite-VI[J]. Control Engineering Practice, 1999, 7(7): 831-841. |
11 | KASAI T, YAMAGUCHI I, IGAWA H, et al. A case study of on-orbit system identification experiments on Engineering Test Satellite-VIII[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2009, 7(3): 277-283 (in Japanese). |
12 | FORESTER S M. Energy harvesting for self-powered, ultra-low power microsystems with a focus on vibration-based electromechanical conversion[D]. Annapolis: United States Naval Academy, 1999. |
13 | GAO Y F, ZHANG G F, WANG X F. A miniature composite energy harvesting system for wireless sensor nodes[J]. Nanotechnology and Precision Engineering, 2012, 10(4): 327-331. |
14 | 黄瑞. 基于环境能量收集的自供能无线传感系统的能量管理研究[D]. 成都: 电子科技大学, 2019: 1-25. |
HUANG R. Research on energy management of self-powered wireless sensor system based on environmental energy harvesting[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 1-25 (in Chinese). | |
15 | 吴寅. 采用环境能量的自供电无线传感器网络关键技术研究[D]. 南京: 南京航空航天大学, 2013: 1-34. |
WU Y. Key technology research of energy harvesting wireless sensor networks[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-34 (in Chinese). | |
16 | BENTUM M J, VAN DER MAREL J, VERHOEVEN C J M, et al. Measuring the Delfi-C3 satellite using the westerbork synthesis radio telescope[C]∥ 2012 6th European Conference on Antennas and Propagation (EUCAP). Piscataway: IEEE Press, 2012: 1095-1098. |
17 | DE BOOM C W, LEIJTENS J A P, DUIVENBODE L M H V, et al. Micro digital Sun sensor: System in a package[C]∥ 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04). Piscataway: IEEE Press, 2005: 322-328. |
18 | BARNHART D J, VLADIMIROVA T, SWEETING M N. System-on-a-chip design of self-powered wireless sensor nodes for hostile environments[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-12. |
19 | ANONYMOUS. Wind-driven wireless networked system of mobile sensors for Mars exploration[J]. NASA Tech Briefs, 2013, 37(1): 42-43. |
20 | HE C R, KIZIROGLOU M E, YATES D C, et al. A MEMS self-powered sensor and RF transmission platform for WSN nodes[J]. IEEE Sensors Journal, 2011, 11(12): 3437-3445. |
21 | 郎燕, 张国琪. 空间站太阳翼挠性测量与控制试验系统在轨实施方案[R]. 北京: 北京控制工程研究所, 2020: 1-40. |
LANG Y, ZHANG G Q. On-orbit implementation scheme of solar array flexibility measurement and control test system of China space station[R]. Beijing, Beijing Institute of Control Engineering, 2020: 1-40 (in Chinese). |
/
〈 |
|
〉 |