ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Reverse jet flow control by plasma synthetic jet actuator in high speed flow field
Received date: 2022-07-09
Revised date: 2022-07-27
Accepted date: 2022-08-16
Online published: 2022-08-31
As a special aerodynamic phenomenon accompanying high-speed flight, shock wave has an important impact on the safety and performance of aircraft. Effective flow control has great significance in improving the aerodynamic/thermal environment of aircraft. Plasma has attracted more and more attention in recent years because of its simple structure, small mass, fast frequency response, large excitation bandwidth, adjustable excitation intensity, easy arrangement and no auxiliary control system. In this paper, high speed schlieren and laser dynamic pressure sensor are used to study the unsteady control of bow shock by counter jet of plasma synthetic jet. The results show that plasma synthetic jet has a strong flow control effect, whose control time is more than 600 μs. With the decrease of jet pressure, the controlled bow shock presents short penetration mode and long penetration mode changes. The debugging process of the two modes has a certain degree of drag reduction effect on the model.
Zheng LI , Cong XU , Jian ZHANG , Mengmeng LI , Yilei MA , Guanghui BAI . Reverse jet flow control by plasma synthetic jet actuator in high speed flow field[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(S2) : 225 -232 . DOI: 10.7527/S1000-6893.2022.27789
1 | COUSTOLS E, COUSTEIX J. Performances of riblets in the supersonic regime[J]. AIAA Journal, 32(2): 431-433. |
2 | SANDRA C, VIVIANA L. Influence of Mach number and static pressure on plasma flow control of supersonic and rarefied flows around a sharp flat plate[J]. Experiments in Fluids, 2017, 58(6):74-74. |
3 | HUANG J, YAO W, SHAN X. Coupled fluid-thermal investigation on non-ablative thermal protection system with spiked body and opposing jet combined configuration[J]. Chinese Journal of Aeronautics, 2019, 32(6):1390-1402. |
4 | JIANG Z L, LIU Y F, HAN G L, et al. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles[J]. Acta Mechanica Sinica, 2009,25(3): 417-419. |
5 | XIE W, LUO Z, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35 (8):75-91. |
6 | KAMETANI Y, KOTAKE A, FUKAGATA K, et al. Drag reduction capability of uniform blowing in supersonic wall-bounded turbulent flows[J]. Physical Review Fluids, 2017, 2(12): 123904. |
7 | KUMAR R, ALI M Y, ALVI F S, et al. Generation and control of oblique shocks using microjets[J]. AIAA Journal, 2011, 49(12): 2751-2759. |
8 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
9 | 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. |
WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronauticaet et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). | |
10 | VENUKUMAR B, JAGADEESH G, REDDY K. Counterflow drag reduction by supersonic jet for a blunt body in hypersonic flow[J]. Physics of Fluids, 2006, 18(11):471. |
11 | WANG H, JUN L I, JIN D, et al. Effect of a transverse plasma jet on a shock wave induced by a ramp[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1854-1865. |
12 | DUAN L, CHOUDHARI M M. Direct numerical simulations of high-speed turbulent boundary layers over riblets: AIAA-2014-0934[R].Reston:AIAA,2014. |
13 | AHMED M Y M, QIN N. Metamodels for aerothermodynamic design optimization of hypersonic spiked blunt bodies[J]. Aerospace science and technology, 2010, 14(5):364-376. |
14 | 何坤, 袁化成. 典型激波针减阻降热特性及流动机理[J]. 航空动力学报, 2022, 37(5): 1064-1078 |
HE K, YUAN H C. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power, 2022,37(5):1064-1078 (in Chinese). | |
15 | SCHüLEIN E. Wave drag reduction approach for blunt bodies at high anngles of attack: proof-of-concept experiments: AIAA-2008- 4000 [R].Reston:AIAA,2008. |
16 | ROBINSON S K. Effects of riblets on turbulence in a supersonic boundary layer: AIAA-1988-2526[R].Reston:AIAA,1988. |
17 | FARR R, CHANG C L, JONES J H, et al. On the comparison of the long penetration mode (LPM) supersonic counterflowing jet to the supersonic screech jet: AIAA-2015-3126[R].Reston:AIAA,2015. |
18 | VENKATACHARI B S, CHENG G C, CHANG C L. Effect of counterflowing jet on supersonic slender-body configurations: a numerical study[J]. Journal of Spacecraft and Rockets, 2020, 57(6): 1204-1221. |
19 | DENG F, XIE F, QIN N, et al. Drag reduction investigation for hypersonic lifting-body vehicles with aerospike and long penetration mode counterflowing jet[J]. Aerospace Science and Technology, 2018, 76:361-373. |
20 | SUN X W, GUO Z Y, HUANG W, et al. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows[J]. Acta Astronautica, 2017, 131: 204-225. |
21 | CYBYK B, GROSSMAN K, VAN W D. Computational assessment of the SparkJet flow control actuator: AIAA-2003-3711[R].Reston:AIAA,2003. |
22 | TANG M, YUN W, WANG H, et al. Characterization of transverse plasma jet and its effects on ramp induced separation[J]. Experimental Thermal and Fluid Science, 2018, 99:584-594. |
23 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
24 | LI Z, SHI Z, DU H. Analytical model: Characteristics of nanosecond pulsed plasma synthetic jet actuator in multiple-pulsed mode [J]. Advances in Applied Mathematics and Mechanics, 2017, 9(2): 439-462. |
/
〈 |
|
〉 |