ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Non-Gaussian random vibration testing of MIMO narrowband on broadband
Received date: 2022-05-20
Revised date: 2022-07-14
Accepted date: 2022-08-15
Online published: 2022-08-31
Supported by
National Natural Science Foundation of China(12202187);China Postdoctoral Science Foundation(2022M721610);Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB210)
Non-Gaussian random vibration control testing of multi-input multi-output narrowband on broadband is proposed. Firstly, the relationship among the random phase, skewness and kurtosis of non-Gaussian random signals is analyzed, and an iteration phase adjustment method is proposed for rapid generation of non-Gaussian random signals with specified skewness and kurtosis. Secondly, the non-Gaussian random signals of multi-channels are decoupled and generated by the uncorrelation characteristic of the random phase among different channels. Taking the generated non-Gaussian random signals as the output responses, we then obtain the driving signals by the time domain inverse system method for vibration testing. The control algorithms are used to correct the PSDs, skewness and kurtosis of the response signals. Finally, the feasibility of the proposed method is verified by tri-axial shaker testing. The results show that the PSDs at the control channels can be controlled within the specified references. Meanwhile, the skewness and kurtosis of response signals in the time domain also meet the given references.
Yi MA , Xudong HE , Huaihai CHEN , Ronghui ZHENG . Non-Gaussian random vibration testing of MIMO narrowband on broadband[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(8) : 227475 -227475 . DOI: 10.7527/S1000-6893.2022.27475
1 | 马益, 秦远田, 付国庆. 力限半经验系数研究[J]. 国外电子测量技术, 2017, 36(9): 86-90. |
MA Y, QIN Y T, FU G Q. Research of force-limited vibration for semi-empirical coefficient[J]. Foreign Electronic Measurement Technology, 2017, 36(9): 86-90 (in Chinese). | |
2 | MUSELLA U, D’ELIA G, CARRELLA A, et al. A minimum drives automatic target definition procedure for multi-axis random control testing[J]. Mechanical Systems and Signal Processing, 2018, 107: 452-468. |
3 | XIE Y M, SHI H, BI F X, et al. A MIMO data driven control to suppress structural vibrations[J]. Aerospace Science and Technology, 2018, 77: 429-438. |
4 | MAJI A, MOREU F, WOODALL J, et al. Error analyses of a Multi-Input-Multi-Output cantilever beam test[J]. Journal of Vibration and Control, 2022, 28(21-22): 3426-3437. |
5 | ZHENG R H, CHEN H H, VANDEPITTE D, et al. Generation of sine on random vibrations for multi-axial fatigue tests[J]. Mechanical Systems and Signal Processing, 2019, 126: 649-661. |
6 | D’ELIA G, MUSELLA U, MUCCHI E, et al. Analyses of drives power reduction techniques for multi-axis random vibration control tests[J]. Mechanical Systems and Signal Processing, 2020, 135: 106395. |
7 | 郑威, 陈怀海. MIMO随机振动试验控制的逆多步预测模型法[J]. 航空学报, 2020, 41(2): 223000. |
ZHENG W, CHEN H H. Inverse multi-step prediction model method for MIMO random vibration test control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223000 (in Chinese). | |
8 | MA Y, CHEN H H, ZHENG R H. Control strategy for multi-axial swept sine on random mixed vibration testing[J]. Journal of Sound and Vibration, 2022, 527: 116846. |
9 | 中国人民解放军总装备部. 军用装备实验室环境试验方法.第16部分: 振动试验: [S]. 北京: 中国人民解放军总装备部军标出版发行部,2009. |
The General Armaments Department of the People’s Liberation Army. Laboratory environmental test methods for military material.Part 16: Vibration test: [S]. Beijing: The Chinese People’s Liberation Army General Armaments Department Military Standard Publication Distribution Department Press, 2009 (in Chinese). | |
10 | Department of Defense Test Method Standard. Environmental engineering considerations and laboratory tests: MIL-S [S].Washington,D.C.:US Department of Defense,2019. |
11 | 张步云. 多输入多输出扫频及混合型振动试验控制系统研究[D]. 南京: 南京航空航天大学, 2014: 59-81. |
ZHANG B Y. Research on multi-input multi-output sweep frequency and hybrid vibration test control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 59-81 (in Chinese) . | |
12 | 孟韩, 黄海, 黄舟. 多自由度非高斯随机振动控制[J]. 航空学报, 2017, 38(2): 220465. |
MENG H, HUANG H, HUANG Z. Multi-degree-of-freedom non-Gaussian random vibration control[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 220465 (in Chinese). | |
13 | 郑荣慧, 陈怀海, 贺旭东, 等. 一种多输入多输出非高斯随机振动试验方法[J]. 振动工程学报, 2017, 30(5): 697-702. |
ZHENG R H, CHEN H H, HE X D, et al. A method for MIMO non-Gaussian random vibration test[J]. Journal of Vibration Engineering, 2017, 30(5): 697-702 (in Chinese). | |
14 | SHENG X Q, FAN W L, YANG X Y, et al. Auxiliary harmonic excitation generalized method for random vibration analysis of linear structures under non-stationary Gaussian excitation[J]. Mechanical Systems and Signal Processing, 2022, 172: 108958. |
15 | SMALLWOOD D O. Generating non-Gaussian vibration for testing purposes[J]. Sound and Vibration, 2005, 39(10): 18-24. |
16 | ZHENG R H, CHEN H H, VANDEPITTE D, et al. Multi-exciter stationary non-Gaussian random vibration test with time domain randomization[J]. Mechanical Systems and Signal Processing, 2019, 122: 103-116. |
17 | STEINWOLF A. Approximation and simulation of probability distributions with a variable kurtosis value[J]. Computational Statistics & Data Analysis, 1996, 21(2): 163-180. |
18 | STEINWOLF A. Random vibration testing with kurtosis control by IFFT phase manipulation[J]. Mechanical Systems and Signal Processing, 2012, 28: 561-573. |
19 | 陈家焱, 陈章位, 周建川, 等. 基于泊松过程的超高斯随机振动试验控制技术研究[J]. 振动与冲击, 2012, 31(6): 19-22, 41. |
CHEN J Y, CHEN Z W, ZHOU J C, et al. Super-Gaussian random vibration test control technique based on Poisson process[J]. Journal of Vibration and Shock, 2012, 31(6): 19-22, 41 (in Chinese). | |
20 | 吴家驹, 张鹏飞, 胡亚冰. 非高斯随机振动的分析基础[J]. 强度与环境, 2018, 45(2): 1-8. |
WU J J, ZHANG P F, HU Y B. Analytical basis for the synthesis of non-Gaussian random vibration[J]. Structure & Environment Engineering, 2018, 45(2): 1-8 (in Chinese). | |
21 | 夏静, 袁宏杰, 徐如远. 一种新的非高斯随机振动信号的模拟方法[J]. 北京航空航天大学学报, 2019, 45(2): 366-372. |
XIA J, YUAN H J, XU R Y. A new simulation method of non-Gaussian random vibration signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 366-372 (in Chinese). | |
22 | 朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击, 2020, 39(16): 96-102, 134. |
ZHU D P. Time-dependent reliability analysis of package under non-Gaussian excitation[J]. Journal of Vibration and Shock, 2020, 39(16): 96-102, 134 (in Chinese). | |
23 | JACQUELIN E, BENNANI A, HAMELIN P. Force reconstruction: analysis and regularization of a deconvolution problem[J]. Journal of Sound and Vibration, 2003, 265(1): 81-107. |
/
〈 |
|
〉 |