ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Mode evolution characteristics of isolated wing tip vortex: Experimental study
Received date: 2022-06-21
Revised date: 2022-07-05
Accepted date: 2022-08-08
Online published: 2022-08-17
Supported by
National Natural Science Foundation of China(9195230);China Postdoctoral Science Foundation(2018M642007)
Using the active flow control method to accelerate the attenuation and fragmentation of the wing tip vortex is one of the most potential technologies to improve the take-off and landing frequency of the airport and ensure the flight safety of aircraft. Due to the lack of understanding of wingtip vortex instability, the existing active control methods often cannot achieve the optimal control effect. To reveal the evolution law of the unstable modes of the wingtip vortex, the evolution characteristics of the unstable modes of the isolated wingtip vortex are studied using the SPIV technique and the linear stability analysis method. The results show that: the perturbation modes of the isolated wingtip vortex can be divided into four types according to its position in the eigenvalue spectrum: main perturbation mode, P secondary perturbation mode, A secondary perturbation mode and S secondary perturbation mode. Among them, the main perturbation mode and P-group perturbation mode have two-lobe structural characteristics, which determine the anisotropic characteristics of wingtip vortex wandering. The secondary perturbation mode of group A has the characteristic that the fluctuation of flow velocity is larger than that of transverse velocity, while the secondary perturbation mode of group S has a higher tangential wavenumber and range of action. The flow direction evolution law of different perturbation modes is different. The main perturbation mode and P group perturbation mode of the wing tip vortex rotate along the flow direction, with the perturbation amplitude gradually magnified with the flow direction. Group A secondary perturbation mode will slowly increase the perturbation amplitude with the development of the flow direction. Group S secondary perturbation mode will gradually cover the whole vortex core with the flow direction, and the perturbation passing through the vortex core will be further magnified with the flow direction. The evolution law of perturbation energy of different wing tip vortex perturbation modes with flow direction is described. S secondary perturbation modes have higher tangential wavenumber characteristics and meanwhile higher perturbation energy growth, meaning that using S-group secondary perturbation modes to guide the active control of the wing tip vortex is the most potential strategy.
Yiming WU , Siyi QIU , Yang XIANG , Hong LIU . Mode evolution characteristics of isolated wing tip vortex: Experimental study[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(11) : 127658 -127658 . DOI: 10.7527/S1000-6893.2022.27658
1 | GERZ T, HOLZ?PFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208. |
2 | GURSUL I, WANG Z J. Flow control of tip/edge vortices[J]. AIAA Journal, 2018, 56(5): 1731-1749. |
3 | EDSTRAND A M, SUN Y Y, SCHMID P J, et al. Active attenuation of a trailing vortex inspired by a parabolized stability analysis[J]. Journal of Fluid Mechanics, 2018, 855: R2. |
4 | LEWEKE T, LE DIZèS S, WILLIAMSON C H K. Dynamics and instabilities of vortex pairs[J]. Annual Review of Fluid Mechanics, 2016, 48: 507-541. |
5 | CROW S C. Stability theory for a pair of trailing vortices[J]. AIAA Journal, 1970, 8(12): 2172-2179. |
6 | KERSWELL R R. Elliptical instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 83-113. |
7 | BAKER G R, BARKER S J, BOFAH K K, et al. Laser anemometer measurements of trailing vortices in water[J]. Journal of Fluid Mechanics, 1974, 65(2): 325-336. |
8 | DEVENPORT W J, RIFE M C, LIAPIS S I, et al. Corrigenda[J]. Journal of Fluid Mechanics, 1996, 326: 437. |
9 | DEEM E, EDSTRAND A, REGER R, et al. Deconvolution correction for wandering in wingtip vortex flowfield data[J]. Journal of Fluid Science and Technology, 2013, 8(2): 219-232. |
10 | BAILEY S C C, TAVOULARIS S. Measurements of the velocity field of a wing-tip vortex, wandering in grid turbulence[J]. Journal of Fluid Mechanics, 2008, 601: 281-315. |
11 | 薛栋, 潘翀, 李广超. 基于流动显示的翼尖涡不稳定频率测量[J]. 北京航空航天大学学报, 2016, 42(4): 837-843. |
XUE D, PAN C, LI G C. Frequency measurement of wing-tip vortex instability by flow visualization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 837-843 (in Chinese). | |
12 | EDSTRAND A M, DAVIS T B, SCHMID P J, et al. On the mechanism of trailing vortex wandering[J]. Journal of Fluid Mechanics, 2016, 801: R1. |
13 | CHENG Z P, QIU S Y, XIANG Y, et al. Quantitative features of wingtip vortex wandering based on the linear stability analysis[J]. AIAA Journal, 2019, 57(7): 2694-2709. |
14 | LESSEN M, SINGH P J, PAILLET F. The stability of a trailing line vortex. Part 1. Inviscid theory[J]. Journal of Fluid Mechanics, 1974, 63(4): 753-763. |
15 | KHORRAMI M R. On the viscous modes of instability of a trailing line vortex[J]. Journal of Fluid Mechanics, 1991, 225: 197-212. |
16 | LEIBOVICH S, STEWARTSON K. A sufficient condition for the instability of columnar vortices[J]. Journal of Fluid Mechanics, 1983, 126: 335-356. |
17 | GALLAIRE F, CHOMAZ J M. Mode selection in swirling jet experiments: a linear stability analysis[J]. Journal of Fluid Mechanics, 2003, 494: 223-253. |
18 | FABRE D, SIPP D, JACQUIN L. Kelvin waves and the singular modes of the Lamb-Oseen vortex[J]. Journal of Fluid Mechanics, 2006, 551: 235. |
19 | QIU S Y, CHENG Z P, XU H, et al. On the characteristics and mechanism of perturbation modes with asymptotic growth in trailing vortices[J]. Journal of Fluid Mechanics, 2021, 918: A41. |
20 | XIANG Y, CHENG Z P, WU Y M, et al. Scaling analysis on the dynamic and instability characteristics of isolated wingtip vortex[J]. AIAA Journal, 2021, 59(12): 5198-5210. |
21 | 程泽鹏, 邱思逸, 向阳, 等. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报, 2020, 41(9): 123751. |
CHENG Z P, QIU S Y, XIANG Y, et al. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 123751 (in Chinese). | |
22 | CHENG Z P, WU Y M, XIANG Y, et al. Benefits comparison of vortex instability and aerodynamic performance from different split winglet configurations[J]. Aerospace Science and Technology, 2021, 119: 107219. |
23 | CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics, 2021, 34(5): 1-16. |
24 | 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报, 2019, 40(8): 122712. |
QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122712 (in Chinese). | |
25 | GARCíA-ORTIZ J H, BLANCO-RODRíGUEZ F J, PARRAS L, et al. Experimental observations of the effects of spanwise blowing on the wingtip vortex evolution at low Reynolds numbers[J]. European Journal of Mechanics-B/Fluids, 2020, 80: 133-145. |
26 | RAFFEL M, WILLERT C E, KOMPENHANS J. Particle image velocimetry: A practical guide[M]. New York: Springer, 1998. |
27 | EDSTRAND A M, SCHMID P J, TAIRA K, et al. A parallel stability analysis of a trailing vortexwake[J]. Journal of Fluid Mechanics, 2018, 837: 858-895. |
28 | MACK L M. A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer[J]. Journal of Fluid Mechanics, 1976, 73(3): 497-520. |
29 | 张宇轩, 李伟鹏, 王福新. 流动线性稳定性分析中切比雪夫谱配置法参数敏感性[J]. 上海交通大学学报, 2016, 50(8): 1246-1254, 1263. |
ZHANG Y X, LI W P, WANG F X. A parameter sensitivity study of Chebyshev collocation method in hydrodynamic linear stability analysis[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1246-1254, 1263 (in Chinese). | |
30 | SCHMID P J. Nonmodal stability theory[J]. Annual Review of Fluid Mechanics, 2007, 39: 129-162. |
31 | MAO X R, SHERWIN S. Continuous spectra of the batchelor vortex[J]. Journal of Fluid Mechanics, 2011, 681: 1-23. |
/
〈 |
|
〉 |