ACTA AERONAUTICAET ASTRONAUTICA SINICA >
LMI-based output tracking robust drag-free control with model reference adaptive scheme
Received date: 2022-06-01
Revised date: 2022-06-20
Accepted date: 2022-07-23
Online published: 2022-07-25
Supported by
National Key Research and Development Program(2020YFC2200800);Youth Program of National Natural Science Foundation of China(62103275);Natural Science Foundation of Shanghai(20ZR1427000)
Aiming at the problem of ultra-stable and high precision attitude control of spacecraft platform for the mission of space gravitational wave detection, an enhanced multivariable robust Model Reference Adaptive Control (MRAC) scheme is proposed. To realize the closed-loop robustness of all the output signals, and suppress bounded external disturbances and parametric uncertainties that match the system input, this scheme is applied to the drag-free control loop of detection spacecraft platform. Considering that the system state is uneasy to obtain directly, the design of the MRAC scheme is based on the output feedback and output regulation. To improve the robustness, an adaptive correction term is derived based on solutions to systems of Linear Matrix Inequalities (LMIs) constructed by stability analysis. The Lyapunov analysis verifies the closed-loop stability of each signal, and the numerical simulation verifies the good robustness of the drag-free DOF in the face of nonlinear uncertainties and additional disturbances.
Xiaoyun SUN , Shufan WU , Qiang SHEN . LMI-based output tracking robust drag-free control with model reference adaptive scheme[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(S1) : 727654 -727654 . DOI: 10.7527/S1000-6893.2022.27654
1 | FICHTER W, GATH P, VITALE S, et al. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): S139-S148. |
2 | 邓剑峰, 蔡志鸣, 陈琨, 等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学, 2019, 12(3): 503-514. |
DENG J F, CAI Z M, CHEN K, et al. Drag-free control and its application in China’s space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 503-514 (in Chinese). | |
3 | MOBLEY F, FOUNTAIN G, SADILEK A, et al. Electromagnetic suspension for the tip-II satellite[J]. IEEE Transactions on Magnetics, 1975, 11(6): 1712-1716. |
4 | 胡明, 李洪银, 周泽兵. 无拖曳控制技术及其应用[J]. 载人航天, 2013, 19(2): 61-69. |
HU M, LI H Y, ZHOU Z B. Drag-free control technology and its applications[J]. Manned Spaceflight, 2013, 19(2): 61-69 (in Chinese). | |
5 | FICHTER W, SCHLEICHER A, BENNANI S, et al. Closed loop performance and limitations of the LISA pathfinder drag-free control system:AIAA-2007-6732[R]. Reston: AIAA, 2007. |
6 | 吴树范, 王楠, 龚德仁. 引力波探测科学任务关键技术[J]. 深空探测学报, 2020, 7(2): 118-127. |
WU S F, WANG N, GONG D R. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration, 2020, 7(2): 118-127 (in Chinese). | |
7 | 付海清,吴树范,刘梅林,等.基于干扰观测器的空间惯性传感器自适应控制[J/OL].北京航空航天大学学报(2022-05-17) [2022-06-01].. |
FU H Q, WU S F, LIU M L, et al. Disturbance-observer based adaptive control for space inertial sensor[J/OL]. Journal of Beijing University of Aeronautics and Astronautics(2022-05-17) [2022-06-01]. (in Chinese). | |
8 | 郝伟丞. 基于高增益观测器的单质量无拖曳控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
HAO W C. Single mass drag-free control based on the high-gain observer[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
9 | 王楠. 深空引力波探测的无拖曳控制技术研究[D]. 上海: 上海交通大学, 2020. |
WANG N. The research on drag-free control technology for deep space gravitational wave detection[D]. Shanghai: Shanghai Jiao Tong University, 2020 (in Chinese). | |
10 | MCNAMARA P, VITALE S, DANZMANN K. LISA Pathfinder[J]. Classical and Quantum Gravity, 2008, 25(11): 114034. |
11 | WU S F, FERTIN D.Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica, 2008, 62(12): 668-682. |
12 | LIAN X B, ZHANG J X, LU L, et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4085-4096. |
13 | 张锦绣, 董晓光, 曹喜滨. 基于无速度测量的无拖曳卫星自适应控制方法[J]. 宇航学报, 2014, 35(4): 447-453. |
ZHANG J X, DONG X G, CAO X B. An adaptive controller for drag-free satellites without velocity measurement[J]. Journal of Astronautics, 2014, 35(4): 447-453 (in Chinese). | |
14 | GUO J X, TAO G, LIU Y. A multivariable MRAC scheme with application to a nonlinear aircraft model[J]. Automatica, 2011, 47(4): 804-812. |
15 | FENG G. A robust approach to adaptive control algorithms[J]. IEEE Transactions on Automatic Control, 1994, 39(8): 1738-1742. |
16 | FENG G, CAO S G, REES N W. Stable adaptive control of fuzzy dynamic systems[J]. Fuzzy Sets and Systems, 2002, 131(2): 217-224. |
17 | WU S F, GIULICCHI L, FENAL T, et al. Attitude stabilization of LISA Pathfinder spacecraft using colloidal micro-Newton thrusters AIAA-2010-8198[R]. Reston: AIAA, 2010. |
18 | SONG G, TAO G. A partial-state feedback model reference adaptive control scheme[J]. IEEE Transactions on Automatic Control, 2020, 65(1): 44-57. |
19 | LU M B, LIU L, FENG G. Adaptive tracking control of uncertain Euler-Lagrange systems subject to external disturbances[J]. Automatica, 2019, 104: 207-219. |
20 | FRANCO R, RíOS H, DE LOZA A F, et al. A robust nonlinear model reference adaptive control for disturbed linear systems: An LMI approach[J]. IEEE Transactions on Automatic Control, 2022, 67(4): 1937-1943. |
21 | 刘伟, 高扬. 空间引力波探测中无拖曳控制方法研究[J]. 中国科学: 物理学 力学 天文学, 2020, 50(7): 112-122. |
LIU W, GAO Y. Drag-free control methods for space-based gravitational-wave detection[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(7): 112-122 (in Chinese). | |
22 | 马浩君, 韩鹏, 高东, 等. 深空双质量块无拖曳卫星H∞鲁棒控制器设计[J]. 哈尔滨工业大学学报, 2021, 53(2): 1-13. |
MA H J, HAN P, GAO D, et al. H∞ robust controller design for deep space drag-free satellite with two test masses[J]. Journal of Harbin Institute of Technology, 2021, 53(2): 1-13 (in Chinese). |
/
〈 |
|
〉 |