Electronics and Electrical Engineering and Control

Key technologies for autonomous cooperation of unmanned swarm systems in complex environments

  • XIANG Jinwu ,
  • DONG Xiwang ,
  • DING Wenrui ,
  • SUO Jinli ,
  • SHEN Lincheng ,
  • XIA Hui
Expand
  • 1. School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China;
    2. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China;
    3. Institute of Unmanned System, Beihang University, Beijing 100191, China;
    4. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;
    5. Department of Automation, Tsinghua University, Beijing 100084, China;
    6. Graduate School, National University of Defense Technology, Changsha 410073, China;
    7. Beijing Institute of Electronic System Engineering, Beijing 100074, China

Received date: 2022-06-04

  Revised date: 2022-06-17

  Online published: 2022-07-14

Supported by

Science and Technology Innovation 2030-Key Project of "New Generation Artificial Intelligence" (2020AAA0108200)

Abstract

In complex environments with high dynamics, uncertainty and resource constraints, the unmanned swarm system will face challenges in all fields of the "Observation-Orientation-Decision-Action (OODA)" loop when performing complicated tasks such as collaborative area search and swarm optimal scheduling. To improve the adaptability of unmanned swarm systems to different scenarios, it is necessary to break through the key technologies for autonomous cooperation of unmanned swarm systems in complex environments. Based on the theory of robust autonomous cooperation of large-scale heterogeneous unmanned swarm systems in complex environments, this paper gives a review of the design and modeling methods of adaptive heterogeneous architecture for unmanned swarm systems, and discusses three problems:high-dimensional situation distributed perception and cognition, intelligent decision-making with guiding, trusting and evolving ability, and autonomous cooperative control of the unmanned swarm system in complex environments. Firstly, the research progress of autonomous cooperation of unmanned swarm system in complex environment is summarized. Secondly, the challenges faced by OODA task loop of unmanned swarm system are analyzed. Then, the key technologies involved in autonomous cooperation of unmanned swarm system in complex environment and their progress are reviewed. Finally, the future development of autonomous cooperation of unmanned swarm system is given.

Cite this article

XIANG Jinwu , DONG Xiwang , DING Wenrui , SUO Jinli , SHEN Lincheng , XIA Hui . Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527570 -527570 . DOI: 10.7527/S1000-6893.2022.27570

References

[1] 邹立岩, 张明智, 武剑. 面向体系仿真的智能无人机集群作战建模总体框架研究[J]. 军事运筹与系统工程, 2021, 35(1):64-72. ZOU L Y, ZHANG M Z, WU J. A study on the general framework of intelligent UAS swarm operation modeling oriented on so S simulation[J]. Military Operations Research and Systems Engineering, 2021, 35(1):64-72 (in Chinese).
[2] 张青春, 张兴. 基于DoDAF的C2BMC系统体系结构建模[J]. 指挥信息系统与技术, 2019, 10(3):50-56. ZHANG Q C, ZHANG X. Architecture modeling for C2BMC system based on DoDAF[J]. Command Information System and Technology, 2019, 10(3):50-56 (in Chinese).
[3] 刘翔宇, 姜海洋, 赵洪利, 等. 基于DODAF-OODA的天基信息支援作战视图研究[J]. 兵器装备工程学报, 2019, 40(2):33-38. LIU X Y, JIANG H Y, ZHAO H L, et al. Research on OV of air precision striking operation with space information support based on DODAF-OODA[J]. Journal of Ordnance Equipment Engineering, 2019, 40(2):33-38 (in Chinese).
[4] 戎光, 刘新发, 夏惠诚. 基于DoDAF的大型舰艇编队防空反导系统作战体系结构[J]. 舰船电子对抗, 2012, 35(6):22-25, 39. RONG G, LIU X F, XIA H C. Operation architecture of air defense and anti-missile system of large warship formation based on DoDAF[J]. Shipboard Electronic Countermeasure, 2012, 35(6):22-25, 39 (in Chinese).
[5] 王洪胜, 禹大勇, 曲延明. 基于DoDAF的舰载弹炮结合防空武器系统模型[J]. 兵工自动化, 2014, 33(5):28-31, 46. WANG H S, YU D Y, QU Y M. Shipboard missile Gun integrated air-defense weapon system model based on DoDAF[J]. Ordnance Industry Automation, 2014, 33(5):28-31, 46 (in Chinese).
[6] DARPA. System of Systems Integration Technology and Experimentation (SoSITE)[EB/OL]. (2016-10-27)[2022-06-04]. https://www.darpa.mil/program/sytem-of-sytem-integration-technology-and-experimention.
[7] DARPA. Collaborative Operations in Denied Environment (CODE)[EB/OL]. (2018-11-28)[2022-06-04].https://www.darpa.mil/program/collaborative-opertions-in-denied-environment.
[8] DARPA. Distributed Battle Management (DBM)[EB/OL]. (2018-02-13)[2022-06-04]. https://www.darpa.mil/program/distributed-battle-management.
[9] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京:科学出版社, 2018. DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing:Science Press, 2018 (in Chinese).
[10] WANG X K, SHEN L C, LIU Z H, et al. Coordinated flight control of miniature fixed-wing UAV swarms:Methods and experiments[J]. Science China Information Sciences, 2019, 62(11):212204.
[11] 段海滨, 申燕凯, 王寅, 等. 2018年无人机领域热点评述[J]. 科技导报, 2019, 37(3):82-90. DUAN H B, SHEN Y K, WANG Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018[J]. Science & Technology Review, 2019, 37(3):82-90 (in Chinese).
[12] DONG Y X. Research on effectiveness evaluation methods[M]. Beijing:National Defense Industry Press, 2009:140-145.
[13] 燕雪峰, 张德平, 黄晓冬. 面向任务的体系效能评估[M]. 北京:电子工业出版社, 2020. YAN X F, ZHANG D P, HUANG X D. Mission oriented effectiveness evaluation and optimization of system of systems[M]. Beijing:Publishing House of Electronics Industry, 2020 (in Chinese).
[14] 李坎. 对地攻击型无人机群协同作战效能分析[J]. 指挥控制与仿真, 2017, 39(6):63-68. LI K. Effectiveness analysis of cooperative engagement for the ground attack Unmanned Aerial Vehicles (UAVs)[J]. Command Control & Simulation, 2017, 39(6):63-68 (in Chinese).
[15] 屈高敏, 董彦非, 岳源. 对地攻击型无人机作战效能评估[J]. 火力与指挥控制, 2016, 41(4):145-149. QU G M, DONG Y F, YUE Y. Operational effectiveness evaluation of ground attack UCAV[J]. Fire Control & Command Control, 2016, 41(4):145-149 (in Chinese).
[16] 黄吉传, 周德云. 无人机协同作战效能评估指标体系设计与分析[J]. 西安工业大学学报, 2020, 40(1):38-44. HUANG J C, ZHOU D Y. Design and analysis of an evaluation index system for UAV cooperative combat effectiveness[J]. Journal of Xi'an Technological University, 2020, 40(1):38-44 (in Chinese).
[17] 陈侠, 胡乃宽. 基于APSO-BP神经网络的无人机空地作战效能评估研究[J]. 飞行力学, 2018, 36(1):88-92. CHEN X, HU N K. Research on effectiveness evaluation of UAV air-to-ground attack based on APSO-BP neural network[J]. Flight Dynamics, 2018, 36(1):88-92 (in Chinese).
[18] 陈亮. 体系作战条件无人机作战效能评估模型[J]. 舰船电子工程, 2016, 36(7):124-127, 160. CHEN L. UAV operational effectiveness evaluation model in system combat[J]. Ship Electronic Engineering, 2016, 36(7):124-127, 160 (in Chinese).
[19] 齐智敏, 张海林, 伊山, 等. 智能无人机群体作战效能评估指标体系研究[J]. 舰船电子工程, 2021, 41(9):1-5. QI Z M, ZHANG H L, YI S, et al. Research on the index system of intelligent UAV group combat effectiveness evaluation[J]. Ship Electronic Engineering, 2021, 41(9):1-5 (in Chinese).
[20] 祝学军, 赵长见, 梁卓, 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4):524332. ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on technology development of OODA empowered with AI[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524332 (in Chinese).
[21] SHI J J, REN M R, WANG P, et al. Research on PF-SLAM indoor pedestrian localization algorithm based on feature point map[J]. Micromachines, 2018, 9(6):267.
[22] WEN W S, HSU L T, ZHANG G H. Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong[J]. Sensors, 2018, 18(11):3928.
[23] 高宏伟, 于斌, 武炎明. 视觉SLAM的空地协同导航方法研究[J]. 沈阳理工大学学报, 2022, 41(1):7-13. GAO H W, YU B, WU Y M. Research on air-ground cooperative navigation based on VSLAM[J]. Journal of Shenyang Ligong University, 2022, 41(1):7-13 (in Chinese).
[24] ATTOUI I, FERGANI N, BOUTASSETA N, et al. A new time-frequency method for identification and classification of ball bearing faults[J]. Journal of Sound and Vibration, 2017, 397:241-265.
[25] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:1440-1448.
[26] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:779-788.
[27] ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack:multi-object tracking by associating every detection box[EB/OL]. (2022-04-07)[2022-06-04]. https://arxiv.org/abs/2110.06864.
[28] CHEN C, ZHANG X L, PENG X F, et al. Multi-sensor fusion technology in inertial navigation system using factor graph[C]//2018 37th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2018:4575-4580.
[29] 张靖, 王向东, 邓志宝, 等. 一种基于因子图的异步信息融合定位算法[J]. 导弹与航天运载技术, 2019(3):89-95. ZHANG J, WANG X D, DENG Z B, et al. An asynchronous information fusion positioning algorithm based on factor graph[J]. Missiles and Space Vehicles, 2019(3):89-95 (in Chinese).
[30] BATTISTELLI G, CHISCI L. Stability of consensus extended Kalman filtering for distributed state estimation[J]. IFAC Proceedings Volumes, 2014, 47(3):5520-5525.
[31] ZHANG H, ZHOU X, WANG Z P, et al. Adaptive consensus-based distributed target tracking with dynamic cluster in sensor networks[J]. IEEE Transactions on Cybernetics, 2019, 49(5):1580-1591.
[32] ZHANG C, JIA Y M. Distributed estimation for stochastic hybrid systems with event-triggered sensor schedule[J]. IET Control Theory & Applications, 2017, 11(2):173-181.
[33] KAMAL A T, FARRELL J A, ROY-CHOWDHURY A K. Information weighted consensus filters and their application in distributed camera networks[J]. IEEE Transactions on Automatic Control, 2013, 58(12):3112-3125.
[34] BATTISTELLI G, CHISCI L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability[J]. Automatica, 2014, 50(3):707-718.
[35] VAHIDPOUR V, RASTEGARNIA A, KHALILI A, et al. Partial diffusion Kalman filtering for distributed state estimation in multiagent networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12):3839-3846.
[36] CHEN Q, YIN C, ZHOU J, et al. Hybrid consensus-based cubature Kalman filtering for distributed state estimation in sensor networks[J]. IEEE Sensors Journal, 2018, 18(11):4561-4569.
[37] KLUGE S, REIF K, BROKATE M. Stochastic stability of the extended Kalman filter with intermittent observations[J]. IEEE Transactions on Automatic Control, 2010, 55(2):514-518.
[38] JI H H, LEWIS F L, HOU Z S, et al. Distributed information-weighted Kalman consensus filter for sensor networks[J]. Automatica, 2017, 77:18-30.
[39] ZHANG Y, SUN L C, HU G Q. Distributed consensus-based multitarget filtering and its application in formation-containment control[J]. IEEE Transactions on Control of Network Systems, 2020, 7(1):503-515.
[40] LI L, YU D D, XIA Y Q, et al. Event-triggered UKF for nonlinear dynamic systems with packet dropout[J]. International Journal of Robust and Nonlinear Control, 2017, 27(18):4208-4226.
[41] DONG H L, BU X Y, WANG Z D, et al. Finite-horizon distributed state estimation under randomly switching topologies and redundant channels[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(8):2938-2947.
[42] 吴亚辉, 刘春阳, 谢赛宝, 等. 基于视觉深度学习的机器人环境感知及自主避障[J]. 电子测量技术, 2021, 44(20):99-106. WU Y H, LIU C Y, XIE S B, et al. Mobile robotic perception and autonomous avoidance based on visual depth learning[J]. Electronic Measurement Technology, 2021, 44(20):99-106 (in Chinese).
[43] ZHOU X, ZHU J C, ZHOU H Y, et al. EGO-swarm:A fully autonomous and decentralized quadrotor swarm system in cluttered environments[C]//2021 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2021:4101-4107.
[44] PARK J, KIM J, JANG I, et al. Efficient multi-agent trajectory planning with feasibility guarantee using relative Bernstein polynomial[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2020:434-440.
[45] ZHANG J, XING J H. Cooperative task assignment of multi-UAV system[J]. Chinese Journal of Aeronautics, 2020, 33(11):2825-2827.
[46] FU Y G, DING M Y, ZHOU C P. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2012, 42(2):511-526.
[47] CHEN Y B, YANG D, YU J Q. Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6):2853-2872.
[48] YAO J J, ANSARI N. Task allocation in fog-aided mobile IoT by Lyapunov online reinforcement learning[J]. IEEE Transactions on Green Communications and Networking, 2020, 4(2):556-565.
[49] ZHAO N, YE Z Y, PEI Y Y, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022,21(9):6949-6960.
[50] WANG L, WANG K Z, PAN C H, et al. Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1):73-84.
[51] ZHAO G X, ZHU M H. Scalable distributed algorithms for multi-robot near-optimal motion planning[J]. Automatica, 2022, 140:110241.
[52] QUAN L, YIN L J, XU C, et al. Distributed swarm trajectory optimization for formation flight in dense environments[EB/OL]. (2022-04-21)[2022-06-04]. https://arxiv.org/abs/2109.07682.
[53] ZHOU X, WANG Z P, YE H K, et al. EGO-planner:An ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2):478-485.
[54] RÖSMANN C, HOFFMANN F, BERTRAM T. Integrated online trajectory planning and optimization in distinctive topologies[J]. Robotics and Autonomous Systems, 2017, 88:142-153.
[55] JAILLET L, SIMEON T. Path deformation roadmaps:compact graphs with useful cycles for motion planning[J]. The International Journal of Robotics Research, 2008, 27(11-12):1175-1188.
[56] ZHOU B Y, GAO F, PAN J, et al. Robust real-time UAV replanning using guided gradient-based optimization and topological paths[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2020:1208-1214.
[57] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[M].Berlin:Springer, 2011:3-19.
[58] VAN DEN BERG J, SNAPE J, GUY S J, et al. Reciprocal collision avoidance with acceleration-velocity obstacles[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2011:3475-3482.
[59] ARUL S H, MANOCHA D. DCAD:Decentralized collision avoidance with dynamics constraints for agile quadrotor swarms[J]. IEEE Robotics and Automation Letters, 2020, 5(2):1191-1198.
[60] LIU Z X, CHEN B M, ZHOU H Y, et al. MAPPER:multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environments[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2020:11748-11754.
[61] PARRISH J K, VISCIDO S V, GRVNBAUM D. Self-organized fish schools:An examination of emergent properties[J]. The Biological Bulletin, 2002, 202(3):296-305.
[62] POTTS W K. The chorus-line hypothesis of manoeuvre coordination in avian flocks[J]. Nature, 1984, 309(5966):344-345.
[63] OKUBO A. Dynamical aspects of animal grouping:Swarms, schools, flocks, and herds[J]. Advances in Biophysics, 1986, 22:1-94.
[64] BEARD R W, MCLAIN T W, NELSON D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs[J]. Proceedings of the IEEE, 2006, 94(7):1306-1324.
[65] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[66] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661.
[67] DENG C, WEN C Y, HUANG J S, et al. Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication[J]. IEEE Transactions on Automatic Control, 2022, 67(5):2669-2676.
[68] FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IFAC Proceedings Volumes, 2002, 35(1):115-120.
[69] YU J L, DONG X W, LI Q D, et al. Fully adaptive practical time-varying output formation tracking for high-order nonlinear stochastic multiagent system with multiple leaders[J]. IEEE Transactions on Cybernetics, 2021, 51(4):2265-2277.
[70] WANG Y W, LIU X K, XIAO J W, et al. Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control[J]. Automatica, 2018, 93:26-32.
[71] LIU H Y, CHENG L, TAN M, et al. Containment control with multiple interacting leaders under switching topologies[C]//Proceedings of the 32nd Chinese Control Conference. Piscataway:IEEE Press, 2013:7093-7098.
[72] LIU S, XIE L H, ZHANG H S. Containment control of multi-agent systems by exploiting the control inputs of neighbors[J]. International Journal of Robust and Nonlinear Control, 2014, 24(17):2803-2818.
[73] DONG X W, HUA Y Z, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(1):229-240.
[74] DONG X W, TAN Q K, LI Q D, et al. Necessary and sufficient conditions for average formation tracking of second-order multi-agent systems with multiple leaders[J]. Journal of the Franklin Institute, 2017, 354(2):611-626.
[75] DONG X W, HU G Q. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664.
[76] ZHENG Y S, WANG L. Consensus of heterogeneous multi-agent systems without velocity measurements[J]. International Journal of Control, 2012, 85(7):906-914.
[77] YU J L, DONG X W, LI Q D, et al. Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(6):2567-2578.
[78] DUAN H B, ZHANG Y P, LIU S Q. Multiple UAVs/UGVs heterogeneous coordinated technique based on Receding Horizon Control (RHC) and velocity vector control[J]. Science China Technological Sciences, 2011, 54(4):869-876.
[79] JIANG W, WEN G G, PENG Z X, et al. Fully distributed formation-containment control of heterogeneous linear multiagent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(9):3889-3896.
[80] LI W H, ZHANG H G, GAO Z Y, et al. Fully distributed event/self-triggered bipartite output formation-containment tracking control for heterogeneous multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, PP(99):1-10.
[81] 张晖. 无人机在消防灭火救援中的应用分析[J]. 消防界(电子版), 2022, 8(1):51-53. ZHANG H. Application analysis of UAV in fire fighting and res-cue[J]. Fire Protection Industry (Electronic Edition), 2022, 8(1):51-53 (in Chinese).
[82] 晏治. 无人机在消防灭火救援工作中的应用效果分析[J]. 消防界(电子版), 2021, 7(23):51-52. YAN Z. Analysis of application effect of unmanned aerial vehicle in fire fighting and rescue work[J]. Fire Protection Industry (Electronic Edition), 2021, 7(23):51-52 (in Chinese).
[83] 阚瑷珂. 复杂山地景区"空-天-地"一体化协同搜救平台研发与应用示范:CN106447579A[P]. 2017-02-22 (in Chinese). KAN Y K. Research and application demonstration of "air-sky-earth" integrated cooperative search and rescue platform in complex mountain scenic spots:CN106447579A[P]. 2017-02-22.
[84] 于斌. 消防灭火救援过程中无人机作用分析[J]. 中国科技信息, 2022(5):76-77. YU B. Analysis of UAV's role in fire fighting and rescue[J]. China Science and Technology Information, 2022(5):76-77 (in Chinese).
[85] 朱连熙, 颜康龙, 罗嘉俊. 基于森林火灾的多类型无人机布局与控制方法[J]. 科技与创新, 2021(23):55-56. ZHU L X, YAN K L, LUO J J. Layout and control method of multi-type unmanned aerial vehicles based on forest fire[J]. Science and Technology & Innovation, 2021(23):55-56 (in Chinese).
[86] 刘闯, 鱼小军, 张婷, 等. 无人集群装备仿真试验关键技术现状及趋势[J/OL]. 航空学报, (2022-03-14)[2022-06-04].https://kns.cnki.net/kcms/detail/11.1929.V.20220311.0949.002.html. LIU C, YU X J, ZHANG T, et al. Research status and trend of key technologies of simulation test of unmanned swarm equipment[J/OL]. Acta Aeronautica et Astronautica Sinica, (2022-03-14)[2022-06-04]. https://kns.cnki.net/kcms/detail/11.1929.V.20220311.0949.002.html (in Chinese).
[87] 王春艳,任浩,匡敏驰, 等.基于军事规则的无人坦克集群协同作战仿真[J].系统仿真学报, 2022,34(8):1691-1696. WANG C Y, REN H, KUANG M C, et al, Simulation of unmanned tank cooperative combat based on military rules[J]. Journal of System Simulation, 2022,34(8):1691-1696 (in Chinese).
[88] 邹立岩, 张明智, 柏俊汝. OODA-L模式下的智能无人集群作战仿真建模框架[J]. 国防科技大学学报, 2021, 43(4):163-170. ZOU L Y, ZHANG M Z, BAI J R. Modeling framework for intelligent unmanned swarm operation simulation under OODA-L pattern[J]. Journal of National University of Defense Technology, 2021, 43(4):163-170 (in Chinese).
[89] 朱波, 胡旭东, 谈东奎, 等. 基于多通道态势图的自动驾驶场景表征方法[J]. 中国公路学报, 2020, 33(8):204-214. ZHU B, HU X D, TAN D K, et al. Automatic driving scenario representation based on multi-channel situation map[J]. China Journal of Highway and Transport, 2020, 33(8):204-214 (in Chinese).
[90] 张斌,林斌,杨彦彰,等.国内民用无人机系统标准体系构建现状[J].中国标准化,2019(S1):122-125. ZHANG B, LIN B, YANG Y Z, et al. Research on the current status of standards system construction for domestic civil UAV system[J]. China Standardization, 2019(S1):122-125 (in Chinese).
Outlines

/