The coupled adjoint equation of laminar-turbulent transition considering the suction control effect is derived for the aerodynamic design of Hybrid Laminar Flow Control (HLFC) airfoils. The chain rule, automatic differentiation algorithm, and CK (Coupled Krylov) algorithms are used to accurately and efficiently solve the coupled adjoint equations. Finally, the gradient-based optimization framework, based on the discrete adjoint equations, for HLFC airfoil is constructed. The transition prediction model adopts the eN method based on the Amplification Factor Model (AFM). The laminar flight test results show that the transition prediction method based on the AFM can effectively capture the transition phenomenon induced by T-S (Tollmien-Schlichting) waves instability under the influence of suction control. The multi-point design of the laminar airfoil is carried out using the gradient-based optimization framework, and comparison of the results with those of the gradient-free optimization. The comparison of natural laminar flow design results show that the gradient-free optimization has a deformation trend similar to the gradient-free optimization. The results of multi-point design of the hybrid laminar flow airfoil show that the hybrid laminar flow optimization has stronger drag reduction ability than the natural laminar flow optimization. Compared with that of the natural laminar airfoil, the total drag of the hybrid laminar airfoil is reduced by 6.1%, 5.9%, 33.3%, 9.5%, respectively. In conclusion, the gradient-based optimization method based on the discrete adjoint equations can effectively improve the aerodynamic performance of the HLFC airfoil, thereby providing methodological support for the future drag reduction design of HLFC.
[1] AGARWAL R. Environmentally responsible air and ground transportation[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[2] DI SANTE R. Fibre optic sensors for structural health monitoring of aircraft composite structures:Recent advances and applications[J]. Sensors, 2015, 15(8):18666-18713.
[3] GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion:A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5):369-391.
[4] KAWAI R, FRIEDMAN D, SERRANO L. Blended wing body (BWB) boundary layer ingestion (BLI) inlet configuration and system studies:NASA/CR-2006-214534[R]. Washington D.C.:NASA, 2013.
[5] DRELA M. Development of the D8 transport configuration[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011.
[6] GUR O, BHATIA M, SCHETZ J A, et al. Design optimization of a truss-braced-wing transonic transport aircraft[J]. Journal of Aircraft, 2010, 47(6):1907-1917.
[7] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91.
[8] RONALD D. Overview of laminar flow control:NASA/TP-1998-208705[R]. Washington D.C.:NASA, 1998.
[9] STREIT T, HORSTMANN K, SCHRAUF G, et al. Complementary numerical and experimental data analysis of the ETW telfona pathfinder wing transition tests[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[10] KRISHNAN K S G, BERTRAM O, SEIBEL O. Review of hybrid laminar flow control systems[J]. Progress in Aerospace Sciences, 2017, 93:24-52.
[11] COLLIER J F Jr. An overview of recent subsonic laminar flow control flight experi-ments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993.
[12] HENKE R. "A 320 HLF Fin" flight tests completed[J]. Air & Space Europe, 1999, 1(2):76-79.
[13] 陈静, 宋文萍, 朱震, 等. 跨声速层流翼型的混合反设计/优化设计方法[J]. 航空学报, 2018, 39(12):122219. CHEN J, SONG W P, ZHU Z,et al. A hybrid inverse/direct optimization design method for transonic laminar flow airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122219(in Chinese).
[14] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):121158. YANG T H, BAI J Q, SHI Y Y,et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121158(in Chinese).
[15] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q,et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese).
[16] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[17] LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617.
[18] HE P, MADER C A, MARTINS J R R A, et al. DAFoam:An open-source adjoint framework for multidisciplinary design optimization with OpenFOAM[J]. AIAA Journal, 2020, 58(3):1304-1319.
[19] DRIVER J, ZINGG D W. Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction[J]. AIAA Journal, 2007, 45(8):1810-1818.
[20] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337.
[21] SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722.
[22] SHI Y Y, MADER C A, MARTINS J R R A. Natural laminar flow wing optimization using a discrete adjoint approach[J]. Structural and Multidisciplinary Optimization, 2021, 64(2):541-562.
[23] 史亚云. 基于离散伴随的层流翼优化设计方法及应用研究[D]. 西安:西北工业大学, 2019. SHI Y Y. Discrete adjoint-based optimization methodology and applied research for laminar flow wing[D]. Xi'an:Northwestern Polytechnical University, 2019(in Chinese).
[24] KAYA H, TUNCER I·H. Discrete adjoint-based aerodynamic shape optimization framework for natural laminar flows[J]. AIAA Journal, 2022, 60(1):197-212.
[25] CEBECI T, KAUPS K, RAMSEY J. A general method for calculating three-dimensional compressible laminar and turbulent boundary layers on arbitrary wings:NASA-CR-2777[R]. Washington D.C.:NASA, 1977.
[26] SHI Y Y, MADER C A, HE S C, et al. Natural laminar-flow airfoil optimization design using a discrete adjoint approach[J]. AIAA Journal, 2020, 58(11):4702-4722.
[27] GLEYZES C, COUSTEIX J, BONNET J L. A calculation method of leading-edge separation bubbles[M].Numerical and Physical Aspects of Aerodynamic Flows II. Berlin:Springer, 1984:173-192.
[28] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355.
[29] SHI Y Y, CAO T S, YANG T H, et al. Correction:Estimation and analysis of hybrid laminar flow control on a transonic experiment[J]. AIAA Journal, 2020, 58(1):118-132.
[30] WONG P, MAINA M. Flow control studies for military aircraft applications[C]//2nd AIAA Flow Control Conference. Reston:AIAA, 2004.
[31] YANG T H, CHEN Y F, SHI Y Y, et al. Stochastic investigation on the robustness of laminar-flow wings for flight tests[J]. AIAA Journal, 2022, 60(4):2266-2286.
[32] YANG T H, ZHONG H, CHEN Y F, et al. Transition prediction and sensitivity analysis for a natural laminar flow wing glove flight experiment[J]. Chinese Journal of Aeronautics, 2021, 34(8):34-47.
[33] FUJINO M, YOSHIZAKI Y, KAWAMURA Y. Natural-laminar-flow airfoil development for a lightweight business jet[J]. Journal of Aircraft, 2003, 40(4):609-615.