Articles

Design and validation of eccentric beam for variable camber trailing edge

  • ZHANG Sheng ,
  • YANG Yu ,
  • WANG Zhigang ,
  • SHI Xintong
Expand
  • Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-05-31

  Revised date: 2022-05-10

  Online published: 2022-07-07

Abstract

The trailing edge structure of flexible wing with variable curvature based on the bending deformation of base plate is difficult to deform accurately, and has poor bearing capacity. A driving structure for the eccentric beam with multiple morphing control points is proposed. Connection between the eccentric beam and the flexible trailing edge structure is designed. According to the requirement of the deformation target, a simplified parameterized nonlinear model code is developed by ABAQUS secondary development, and a program based on particle swarm optimization and the model code is developed for optimization of numbers and positions of control points. The compensated displacement in morphing control points is calculated by loads analysis. A non-contact measurement system is built to test the deformation of the structure. The results show that the deflection angle of the structure reaches 15°, the contour after deformation is in good agreement with the deformation target, and the error at the tip is within 2 mm. The structure driving scheme and optimization method are thus verified to be feasible.

Cite this article

ZHANG Sheng , YANG Yu , WANG Zhigang , SHI Xintong . Design and validation of eccentric beam for variable camber trailing edge[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 525892 -525892 . DOI: 10.7527/S1000-6893.2021.25892

References

[1] ANHALT C, MONNER H P, BREITBACH E. Interdisciplinary wing design-structural aspects:03 WAC-29[R]. Warrendale:SAE International, 2003.
[2] MONNER H, KINTSCHER M, LORKOWSKI T, et al. Design of a smart droop nose as leading edge high lift system for transportation aircrafts:AIAA-2009-2128[R]. Reston:AIAA, 2009.
[3] CONCILIO A, DIMINO I, PECORA R. SARISTU:Adaptive Trailing Edge Device (ATED) design process review[J]. Chinese Journal of Aeronautics, 2021, 34(7):187-210.
[4] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9):823-877.
[5] 吕帅帅, 王彬文, 杨宇, 等. 基于遗传算法的机翼柔性蒙皮全参数优化设计[J]. 应用力学学报, 2020, 37(2):617-623, 931. Lü S S, WANG B W, YANG Y, et al. Normal optimization design of flexible skin of airfoil based on genetic algorithm[J]. Chinese Journal of Applied Mechanics, 2020, 37(2):617-623, 931(in Chinese).
[6] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7):271-278.
[7] 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1):144-163. WANG B W, YANG Y, QIAN Z S, et al. Technical development of variable camber wing:Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):144-163(in Chinese).
[8] 刘谦, 杨玉岭. 欧美变形机翼技术发展追踪[J]. 国际航空, 2020(5):61-64. LIU Q, YANG Y L. Morphing wing technology in the US and Europe[J]. International Aviation, 2020(5):61-64(in Chinese).
[9] 朱华, 刘卫东, 赵淳生. 变体飞行器及其变形驱动技术[J]. 机械制造与自动化, 2010, 39(2):8-14, 125. ZHU H, LIU W D, ZHAO C S. Morphing aircraft and its morph-driving techniques[J]. Machine Building & Automation, 2010, 39(2):8-14, 125(in Chinese).
[10] 乐挺, 王立新, 艾俊强. 变体飞机设计的主要关键技术[J]. 飞行力学, 2009, 27(5):6-10. YUE T, WANG L X, AI J Q. Key technologies in morphing aircraft design[J]. Flight Dynamics, 2009, 27(5):6-10(in Chinese).
[11] 刘影, 李春鹏, 张铁军, 等. 后缘连续偏转机翼振荡射流控制的数值模拟研究[J]. 航空科学技术, 2020, 31(5):36-43. LIU Y, LI C P, ZHANG T J, et al. Numerical simulation of oscillating jet control for trailing edge continuous deflection wing[J]. Aeronautical Science & Technology, 2020, 31(5):36-43(in Chinese).
[12] KUDVA J N, JARDINE A P, MARTIN C A, et al. Overview of the ARPA/WL smart structures and materials development-smart wing contract[C]//CROWE R C. Smart Structures and Materials 1996:Industrial and Commercial Applications of Smart Structures Technologies. San Diego:Society of Photo-Optical Instrumentation Engineers (SPIE), 1996.
[13] MILLER E J, LOKOS WA, CRUZ J, et al. Approach for structurally clearing an adaptive compliant trailing edge flap for flight:DFRC-E-DAA-TN24640[R] Washington, D.C.:NASA, 2015.
[14] CAMPANILE L F, ANDERS S. Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils[J]. Aerospace Science and Technology, 2005, 9(1):55-63.
[15] MONNER H P, SACHAU D, BREITBACH E. Design aspects of the elastic trailing edge for an adaptive wing:AC/323(AVT)TP/17[R]. Ottawa:Canada Communication Group Inc. (A St. Joseph Corporation Company), 2000.
[16] RISSE K, ANTON E, LAMMERING T, et al. An integrated environment for preliminary aircraft design and optimization:AIAA-2012-1675[R]. Reston:AIAA, 2012.
[17] RICCI S, SCOTTI A, TERRANEO M. Design, manufacturing and preliminary test results of an adaptive wing camber model:AIAA-2006-2043[R]. Reston:AIAA, 2006.
[18] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7):271-278.
[19] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8):19-22. ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8):19-22(in Chinese).
[20] SUN J, GONG X B, LIU Y J, et al. Variable camber wing based on shape memory polymer skin:AIAA-2013-1919[R]. Reston:AIAA, 2013.
[21] RIVERO A E, WEAVER P M, COOPER J E, et al. Structural modeling of compliance-based camber morphing structures under transverse shear loading[J]. AIAA Journal, 2020, 58(11):4941-4951.
[22] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9):2008-2026.
[23] KUDVA J N, APPA K, VAN WAY C B, et al. Adaptive smart wing design for military aircraft:requirements, concepts, and payoffs[C]//JAYANTH N K, KARI A, CRAIG B, et al. Smart Structures and Materials 1995:Industrial and Commercial Applications of Smart Structures Technologies. San Diego:Society of Photo-Optical Instrumentation Engineers (SPIE), 1995.
[24] HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing:AIAA-2007-1709[R]. Reston:AIAA, 2007.
Outlines

/