Solid Mechanics and Vehicle Conceptual Design

Technological breakthroughs of LM-5 and future developments of China's launch vehicle

  • LI Dong ,
  • LI Pingqi
Expand
  • 1. China Academy of Launch Vehicle Technology, Beijing 100076, China;
    2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China

Received date: 2022-04-06

  Revised date: 2022-04-21

  Online published: 2022-06-17

Abstract

The LM-5 is the large-scale cryogenic launch vehicle developed in China. It fills the gap of China's large-scale launch vehicle, greatly improves China's ability to enter space, and drives the overall progress of China's launch vehicle technology. In this paper, the breakthroughs and innovations of more than 240 key technologies of LM-5 has been comprehensively summarized, represented by new rocket configuration and overall optimization technologies, 5 m diameter rocket body structure design, manufacture and test technologies, high performance cryogenic rocket engine technologies, high reliability control and large capacity telemetry technologies, new test launch modes and launch support technologies. Moreover, this paper analyzes the gap between launch vehicle technology in China and the advanced level of foreign technology, and foresees the future development for the launch vehicle technology of China. Based upon this, the prospects of such key directions like the multi-specialty collaborative fine design, reuse of the rocket, intelligent flight and evaluation, advanced material and craft technology application, high performance rocket engine, intelligent unmanned test and launch technology are also put forward.

Cite this article

LI Dong , LI Pingqi . Technological breakthroughs of LM-5 and future developments of China's launch vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(10) : 527269 -527269 . DOI: 10.7527/S1000-6893.2022.27269

References

[1] 龙乐豪. 中国运载火箭技术的成就与展望[J]. 导弹与航天运载技术, 2001(1):1-8. LONG L H. The achievement and prospect of China launch vehicle technology[J]. Missiles and Space Vehicles, 2001(1):1-8 (in Chinese).
[2] 吴燕生. 中国航天运输系统的发展与未来[J]. 导弹与航天运载技术, 2007(5):1-4. WU Y S. Development and future of space transportation system of China[J]. Missiles and Space Vehicles, 2007(5):1-4 (in Chinese).
[3] 王小军. 中国航天运输系统未来发展展望[J]. 导弹与航天运载技术, 2021(1):1-6. WANG X J. Future development of space transportation system of China[J]. Missiles and Space Vehicles, 2021(1):1-6 (in Chinese).
[4] UNDERHILLA K,BRETEAUB J,CARUANAC J N,et al. Preparing the future of European space transportation[C]//69th International Astronautical Congress, 2018.
[5] PATZELT A,MERINO J,HEGELS J,et al. Ariane 6 -New aerostructures for the new European launcher[C]//68th International Astronautical Congress, 2017.
[6] KUTTER B. Innovation & launch services for the next decade:Advanced centaur capabilities and technologies[C]//69th International Astronautical Congress, 2018.
[7] 龙乐豪, 李平岐, 秦旭东, 等. 我国航天运输系统60年发展回顾[J]. 宇航总体技术, 2018, 2(2):1-6. LONG L H, LI P Q, QIN X D, et al. The review on China space transportation system of past 60 years[J]. Astronautical Systems Engineering Technology, 2018, 2(2):1-6 (in Chinese).
[8] 李东, 王珏, 何巍, 等. 长征五号运载火箭总体方案及关键技术[J]. 导弹与航天运载技术, 2017(3):1-5, 113. LI D, WANG J, HE W, et al. The general scheme and key technologies of CZ-5 launch vehicle[J]. Missiles and Space Vehicles, 2017(3):1-5, 113 (in Chinese).
[9] 龙乐豪, 蔡巧言, 王飞, 等. 重复使用航天运输系统发展与展望[J]. 科技导报, 2018, 36(10):84-92. LONG L H, CAI Q Y, WANG F, et al. Development of reusable space transportation technologies[J]. Science & Technology Review, 2018, 36(10):84-92 (in Chinese).
[10] 鲁宇, 汪小卫, 高朝辉, 等. 重复使用运载火箭技术进展与展望[J]. 导弹与航天运载技术, 2017(5):1-7. LU Y, WANG X W, GAO C H, et al. Progress and prospect of reusable launch vehicle technology[J]. Missiles and Space Vehicles, 2017(5):1-7 (in Chinese).
[11] 宋征宇, 黄兵, 汪小卫, 等. 重复使用航天运载器的发展及其关键技术[J]. 前瞻科技,2022, 1(1):62-74. SONG Z Y, HUANG B, WANG X W, et al. Development and key technologies of reusable space vehicles[J]. Science and Technology Foresight, 2022, 1(1):62-74 (in Chinese).
[12] 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11):525050. SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):525050 (in Chinese).
[13] 李洪. 智慧火箭发展路线思考[J]. 宇航总体技术, 2017, 1(1):1-7. LI H. The developing roadmap of intelligent launch vehicle[J]. Astronautical Systems Engineering Technology, 2017, 1(1):1-7 (in Chinese).
[14] 鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术, 2017, 1(3):1-8. LU Y. Space launch vehicle's development in China[J]. Astronautical Systems Engineering Technology, 2017, 1(3):1-8 (in Chinese).
[15] SONG Z Y, LIU Y, HE Y, et al. Autonomous mission reconstruction during the ascending flight of launch vehicles under typical propulsion system failures[J]. Chinese Journal of Aeronautics, 2022, 35(6):211-225.
[16] SONG Z Y, PAN H, ZHAO Y X, et al. Reviews and challenges in reliability design of Long March launcher control systems[J]. AIAA Journal, 2022, 60(2):537-550.
[17] MERINO J,PATZELT A,STEINACHER A,et al. Ariane 6-Tanks & structure for the new European launcher[C]//Deutscher Luft-und Raumfahrtkongress, 2017.
[18] 黄诚, 刘德博, 吴会强, 等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2):27-35. HUANG C, LIU D B, WU H Q, et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace University, 2016, 33(2):27-35 (in Chinese).
[19] 范瑞祥, 王小军, 程堂明, 等. 中国新一代中型运载火箭总体方案及发展展望[J]. 导弹与航天运载技术, 2016(4):1-4. FAN R X, WANG X J, CHENG T M, et al. General scheme and development prospects for new generation of Chinese medium launch vehicle[J]. Missiles and Space Vehicles, 2016(4):1-4 (in Chinese).
[20] LI B, ZHANG R, ZHANG M, et al. A review of throttling technology development for large-thrust liquid rocket engines[J]. Aerospace China, 2021, 22(2):14-24.
[21] 李斌. 液体火箭主发动机技术现状与发展建议[J]. 前瞻科技, 2022, 1(1):75-85. LI B. Technical status and development suggestions of liquid rocket main engine[J]. Science and Technology Foresight, 2022, 1(11):75-85 (in Chinese).
[22] 张青松, 刘巧珍, 王晓林, 等. 低温火箭自主故障诊断和发射控制[J]. 计算机测量与控制, 2020, 28(2):1-9, 32. ZHANG Q S, LIU Q Z, WANG X L, et al. Autonomous fault diagnosis and pre-launch control for cryogenic rocket[J]. Computer Measurement & Control, 2020, 28(2):1-9, 32 (in Chinese).
[23] MELISSA S. The next frontier:Innovative launch services[C]//Proceedings of the International Astronautical Congress, 2017.
[24] WANG X W, WU S B, GAO Z H, et a1. Recovery technology of launch Vehicle stage[C]//67th Internationa1 Astronautical Congress(IAC), 2016.
[25] BAO W M, WANG X W. Develop high reliab1e and low-cost technology of access to Space, embrace newspace economy era[J]. Aerospace China, 2019, 20(4):23-30.
[26] VASILIEV V V, RAZIN A F. Anisogrid composite lattice structures for spacecraft and aircraft applications[J]. Composite Structures, 2006, 76(1-2):182-189.
[27] 顾名坤, 何巍, 唐科, 等. 中国液体运载火箭结构系统发展规划研究[J]. 宇航总体技术, 2021, 5(2):55-67. GU M K, HE W, TANG K, et al. Research on the development plan of Chinese liquid launch vehicle structure system[J]. Astronautical Systems Engineering Technology, 2021, 5(2):55-67 (in Chinese).
[28] ADACHIA M, TAMURAB T. Progress summary of engineeing mode1 firing tests in LE-9 engine deve1opment[C]//68th International Astronautical Congress, 2017.
[29] 陈士强, 黄辉, 邵业涛, 等. 航天动力系统未来需求方向及发展建议的思考[J]. 宇航总体技术, 2019, 3(1):62-70. CHEN S Q, HUANG H, SHAO Y T, et al. Study on the requirement trend and development suggestion for China space propulsion system[J]. Astronautical Systems Engineering Technology, 2019, 3(1):62-70 (in Chinese).
[30] PENDLETON R. Rapidly deployable space capabilities based assessment-approach and status[C]//7th Re-Sponsive Space Conference, 2009.
[31] 王子瑜, 陈海鹏, 朱永泉, 等. 运载火箭快速测试发射关键技术[J]. 中北大学学报(自然科学版), 2017, 38(3):307-315. WANG Z Y, CHEN H P, ZHU Y Q, et al. Survey and review on rapid test technology of launch vehicle[J]. Journal of North University of China (Natural Science Edition), 2017, 38(3):307-315 (in Chinese).
Outlines

/