Fluid Mechanics and Flight Mechanics

Cooling performance analysis of combustion liner in reverse-flow combustor

  • Weiping LI ,
  • Longjin YANG
Expand
  • College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China
E-mail: 1127793157@qq.com

Received date: 2022-04-26

  Revised date: 2022-05-17

  Accepted date: 2022-05-30

  Online published: 2022-06-08

Supported by

Provincial and Ministerial Level Project

Abstract

To study the combustion and cooling performance of the combustion liner in the reverse-flow combustor, a combustor model was built, and failure reasons were analyzed through heat fluid-structure coupling simulation. By introducing film cooling holes with different hole types and dip angles, the cooling effect of the original defective component part was compared. The results show that the location of the maximum temperature and maximum temperature gradient of the original structural part is the same as the failure location of the actual fault part, so that it can be considered that the failure is caused by high temperature and high temperature gradient; compared with initial cooling structure, the maximum temperature of the inner wall of the reverse combustor all decreased after the hole structure change, 281.34 K at most and 60.15 K at least; with the same hole type, the cooling effectiveness is the best at a hole inclination angle of 30°, and the cooling effectiveness is the worst at the hole inclination angle of 60°. With the same hole inclination angle, the cooling effectiveness of the convergent hole is the best, because of a vortex pair opposite to the original structure generated on the section near the outlet end, therefore improving the cooling effect, while the cooling effectiveness of cylindrical holes is the worst.

Cite this article

Weiping LI , Longjin YANG . Cooling performance analysis of combustion liner in reverse-flow combustor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(9) : 127326 -127326 . DOI: 10.7527/S1000-6893.2022.27326

References

1 彭友梅. 苏联/俄罗斯/乌克兰航空发动机的发展[M]. 北京: 航空工业出版社, 2015.
  PENG Y M. History of Soviet Union/Russian/Ukrainian aero engine[M]. Beijing: Aviation Industry Press, 2015 (in Chinese).
2 LV F J, LI Q, FU G R. Failure analysis of an aero-engine combustor liner[J]. Engineering Failure Analysis201017(5): 1094-1101.
3 BUNKER R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer2005127(4): 441-453.
4 贾贝熙, 吕震宙, 雷婧宇. 涡轮冷却叶片寿命可靠性分析参数化仿真平台[J]. 航空学报202142(12): 224747.
  JIA B X, LYU Z Z, LEI J Y. Parameterized simulation platform of turbine cooling film blade life reliability analysis[J]. Acta Aeronautica et Astronautica Sinica202142(12): 224747 (in Chinese).
5 翟维阔, 胡阁, 彭剑勇, 等. 回流燃烧室流动特性试验[J]. 航空动力学报201934(10): 2081-2090.
  ZHAI W K, HU G, PENG J Y, et al. Experiment on flow characteristics of a reverse-flow combustor[J]. Journal of Aerospace Power201934(10): 2081-2090 (in Chinese).
6 闫晓军, 张辉,洪杰,等. 典型航空发动机结构对比与分析[M]. 北京: 北京航空航天大学出版社, 2011: 12-17.
  YAN X J, ZHANG H, HONG J, et al. Comparison and analysis of typical aero-engine structure[M]. Beijing: Beihang University Press, 2011: 12-17 (in Chinese).
7 杨寓全, 刘存良, 张杰, 等. 分腔流量比对涡轮曲端壁表面冷却特性实验[J]. 航空学报202142(7): 124399.
  YANG Y Q, LIU C L, ZHANG J, et al. Effect of mass flow ratios on film cooling characteristics of endwall: Experimental study[J]. Acta Aeronautica et Astronautica Sinica202142(7): 124399 (in Chinese).
8 张振, 陈子聿, 苏欣荣, 等. 基于孔内流动机理的气膜冷却界面模型[J]. 工程热物理学报202142(7): 1692-1699.
  ZHANG Z, CHEN Z Y, SU X R, et al. In-hole flow based interface model for film cooling[J]. Journal of Engineering Thermophysics202142(7): 1692-1699 (in Chinese).
9 王进, 孙杰, 赵占明, 等. 基于结构参数分析的姊妹孔气膜冷却性能研究[J]. 航空学报202142(7): 124775.
  WANG J, SUN J, ZHAO Z M, et al. Research on film cooling performance of sister hole based on structural parameter analysis[J]. Acta Aeronautica et Astronautica Sinica202142(7): 124775 (in Chinese).
10 冯珍珍, 田晓晶, 李洋, 等. 某重型燃气轮机燃烧室冲击冷却特性研究[J]. 汽轮机技术202062(4): 275-278, 250.
  FENG Z Z, TIAN X J, LI Y, et al. Research of impingement cooling performance for a heavy-duty gas turbine combustor[J]. Turbine Technology202062(4): 275-278, 250 (in Chinese).
11 KREWINKEL R. A review of gas turbine effusion cooling studies[J]. International Journal of Heat and Mass Transfer201366: 706-722 (in Chinese).
12 牛嘉嘉, 刘存良, 刘海涌, 等. 气膜孔与冲击孔面积比和动量比对加力燃烧室双层壁隔热屏综合冷却效率的影响[J]. 推进技术202142(3): 601-611.
  NIU J J, LIU C L, LIU H Y, et al. Effects of area ratio of film hole to impingement hole and momentum flux ratio on overall cooling effectiveness of afterburner double wall heat shield[J]. Journal of Propulsion Technology202142(3): 601-611 (in Chinese).
13 戴萍, 林枫. 气膜孔形状对冷却效率影响的数值研究[J]. 动力工程200929(2): 117-122.
  DAI P, LIN F. Numerical study on the influence of hole’s shape on film cooling efficiency[J]. Journal of Power Engineering200929(2): 117-122 (in Chinese).
14 YOOSIF A H, AL-KHISHALI K J M, HATEM F F. Film cooling experimental investigation for ramped-conical holes geometry [J]. International Journal of Scientific and Engineering Research201310(4): 736-745.
15 KIM J H, KIM K Y. Performance evaluation of a converging-diverging film-cooling hole[J]. International Journal of Thermal Sciences2019142: 295-304.
16 LIU C L, XIE G, ZHU H R, et al. Effect of internal coolant crossflow on the film cooling performance of converging slot hole[J]. International Journal of Thermal Sciences2020154: 106385.
17 AZZI A, JUBRAN B A. Numerical modelling of film cooling from converging slot-hole[J]. Heat and Mass Transfer200743(4): 381-388.
18 YAO Y, ZHANG J Z, TAN X M. Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side[J]. International Communications in Heat and Mass Transfer201452: 61-72.
19 DAI H W, ZHANG J H, REN Y Y, et al. Effect of cooling hole configurations on combustion and heat transfer in an aero-engine combustor[J]. Applied Thermal Engineering2021182: 115664.
20 刘存良, 谢刚, 朱惠人. 高主流湍流度下倾斜角对圆柱孔气膜冷却特性影响的实验研究[J]. 西安交通大学学报201852(1): 47-53, 60.
  LIU C L, XIE G, ZHU H R. Experimental research on the effect of hole-inclined angle on the film cooling characteristics under high mainstream turbulence intensity[J]. Journal of Xi'an Jiaotong University201852(1): 47-53, 60 (in Chinese).
21 林宇震, 宋波, 李彬, 等. 不同倾斜角多斜孔壁冷却方式绝热温比研究[J]. 航空学报199920(3): 201-204.
  LIN Y Z, SONG B, LI B, et al. Investigation of adiabatic wall effectiveness of the inclined multihole wall film cooling with different angles to the wall surface[J]. Acta Aeronautica et Astronautica Sinica199920(3): 201-204 (in Chinese).
22 BEN SIK ALI A, KRIAA W, MHIRI H, et al. Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber[J]. Heat and Mass Transfer201248(5): 779-788.
23 马洪安, 付淑青, 吴宗霖, 等. RP-3航空煤油燃烧特性及其反应机理构建综述[J]. 航空发动机202147(1): 25-31.
  MA H A, FU S Q, WU Z L, et al. Review of combustion characteristics and reaction mechanism construction of RP-3 aviation kerosene[J]. Aeroengine202147(1): 25-31 (in Chinese).
24 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术201536(11): 1734-1740.
  DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology201536(11): 1734-1740 (in Chinese).
25 ZHOU J F, WANG X J, LI J, et al. Numerical investigation on the flow character and film cooling performance of novel merged holes structure[J]. Heat and Mass Transfer201955(12): 3575-3587.
Outlines

/