Reviews

Development situation and future challenges of CAE software used in aeronautical structural analysis

  • WANG Binwen ,
  • DUAN Shihui ,
  • NIE Xiaohua ,
  • GUO Yuchao
Expand
  • Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2022-04-12

  Revised date: 2022-05-20

  Online published: 2022-05-19

Supported by

Civil Aircraft Scientific Research Project (MJZ3-2 N21); Industrial software Scientific Research Project(2021YFB3302302)

Abstract

Structural analysis CAE software is an important means of core technology research, a fundamental guarantee for major equipment development and key support for intelligent manufacturing advancement. The high-level autonomous and controllable (aviation) structural analysis CAE software is of great strategic significance to the leading innovation of aviation science and technology, and the integrity and safety of the equipment development system. By deeply combing the development process of domestic and foreign structural analysis CAE software deeply, this paper systematically analyzes the general development law of this software. Moreover, the challenges of this software are also pointed out from four dimensions, i.e. the complexity of the software itself, research and development cycle, the requirements of equipment, and the reliability. Meanwhile, the generalized connotation, overall idea and key technology of autonomous (aviation) structural analysis CAE software development are put forward from such three levels as the general analysis function group, special analysis tool chain and domestic data resource pool. Finally, based on the current world and national condition of industrial software and the law of scientific development, the prospect of autonomous controllable (aviation) structural analysis CAE software is offered.

Cite this article

WANG Binwen , DUAN Shihui , NIE Xiaohua , GUO Yuchao . Development situation and future challenges of CAE software used in aeronautical structural analysis[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(6) : 527272 -527272 . DOI: 10.7527/S1000-6893.2022.27272

References

[1] 孙侠生, 段世慧, 陈焕星. 坚持自主创新实现航空CAE软件的产业化发展[J]. 计算机辅助工程, 2010, 19(1):1-6. SUN X S, DUAN S H, CHEN H X. Keeping independent innovation, implementing industrialization development of aviation CAE software[J]. Computer Aided Engineering, 2010, 19(1):1-6(in Chinese).
[2] 周晔欣, 戴如玥, 黄争鸣. 复合材料结构力学分析CAE软件现状[J]. 应用力学学报, 2020, 37(1):114-122, 475. ZHOU Y X, DAI R Y, HUANG Z M. Current status of CAE software for composite structural analysis[J]. Chinese Journal of Applied Mechanics, 2020, 37(1):114-122, 475(in Chinese).
[3] 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5):524651. WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524651(in Chinese).
[4] 李卫平, 谭伟, 薛彩军, 等. 民用飞机发动机吊挂部段静力试验与静强度分析[J]. 南京航空航天大学学报, 2011, 43(6):732-737. LI W P, TAN W, XUE C J, et al. Static test and computational analysis for pylon of airliner engine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(6):732-737(in Chinese).
[5] 张国凡, 孙侠生, 吴存利, 等. 复合材料整体化多墙盒段渐进式失效分析和试验验证[J]. 复合材料学报, 2016, 33(10):2344-2354. ZHANG G F, SUN X S, WU C L, et al. Progressive failure analysis and test validation of integral multi-spar composite box[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2344-2354(in Chinese).
[6] 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望[J]. 航空科学技术, 2020, 31(3):1-14. LIU X C, WANG B W, BAI C Y, et al. Progress and prospect of aviation structure impact dynamics[J]. Aeronautical Science & Technology, 2020, 31(3):1-14(in Chinese).
[7] 王彬文, 许光启. 全机非对称外挂状态颤振分析[J]. 应用力学学报, 2001, 18(S1):193-197. WANG B W, XU G Q. Flutter analysis on aircraft for the condition of unsymmetrical stores[J]. Chinese Journal of Applied Mechanics, 2001, 18(Sup 1):193-197(in Chinese).
[8] 赵永辉, 胡海岩. 具有操纵面间隙非线性二维翼段的气动弹性分析[J]. 航空学报, 2003, 24(6):521-525. ZHAO Y H, HU H Y. Aeroelastic analysis of a two-dimensional airfoil with control surface freeplay nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6):521-525(in Chinese).
[9] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1090. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1090(in Chinese).
[10] 沈恩楠, 郭同庆, 吴江鹏, 等. 高超声速全动翼面全时域耦合分析方法及应用[J]. 航空学报, 2021, 42(8):525773. SHEN E N, GUO T Q, WU J P, et al. Full-time coupling method and application of a hypersonic all-movable wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8):525773(in Chinese).
[11] 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5):524791. SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524791(in Chinese).
[12] 王彬文, 张长兴, 郭文杰, 等. 考虑屈曲的复合材料加筋壁板铺层顺序优化[J]. 复合材料学报, 2021, 38(12):4123-4137. WANG B W, ZHANG C X, GUO W J, et al. Stacking sequence optimization of composite stiffened panel considering buckling[J]. Acta Materiae Compositae Sinica, 2021, 38(12):4123-4137(in Chinese).
[13] 王彬文, 艾森, 张国凡, 等. 考虑不确定性的复合材料加筋壁板后屈曲分析模型验证方法[J]. 航空学报, 2020, 41(8):223987. WANG B W, AI S, ZHANG G F, et al. Validation method for post-buckling analysis model of stiffened composite panels considering uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8):223987(in Chinese).
[14] 常楠, 徐荣欣, 陈先民, 等. 静强度/耐久性初步结构优化设计方法[J]. 航空学报, 2021, 42(5):524389. CHANG N, XU R X, CHEN X M, et al. Design method for strength/durability preliminary structure optimization[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524389(in Chinese).
[15] 中国工业技术软件化产业联盟, 中国工业软件产业白皮书(2020)[EB/OL].(2021-06-09)[2022-05-17]. http://www.caitis.cn/newsinfo/1573724.html?templateId=100829. China Industrial Technology Software Industry Alliance. White paper on China's industrial software industry(2020)[EB/OL].(2021-06-09)[2022-05-17]. http://www.caitis.cn/newsinfo/1573724.html?templateId=100829(in Chinese).
[16] 国家自然科学基金委员会, 中国科学院. 未来10年中国学科发展战略·力学[M]. 北京:科学出版社, 2012:40-120. National Natural Science Foundation of China, Chinese Academy of Sciences. China's discipline development strategy in the next 10 years·Mechanics[M]. Beijing:Science Press, 2012:40-120(in Chinese).
[17] 张东凯. 碳纳米管复合材料力学性能的多尺度仿真分析[D]. 大连:大连理工大学, 2016:10-15. ZHANG D K. Multiscale modeling of the mechanical properties of the carbon nanotube-reinforced composites[D]. Dalian:Dalian University of Technology, 2016:10-15(in Chinese).
[18] 孙旋, 童明波, 陈智, 等. 碳纤维复合材料接头力学性能试验与仿真分析[J]. 复合材料学报, 2016, 33(11):2517-2527. SUN X, TONG M B, CHEN Z, et al. Test and simulation analysis of mechanical properties for joint of carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2517-2527(in Chinese).
[19] 王超, 屈方杰, 黄恒敬, 等. 多自由度仿生扑翼飞行机器人结构设计与分析[J]. 宇航总体技术, 2020, 4(1):39-46, 62. WANG C, QU F J, HUANG H J, et al. Design and analysis of multi-degree of freedom bionic flapping wing flight robot structure[J]. Astronautical Systems Engineering Technology, 2020, 4(1):39-46, 62(in Chinese).
[20] 孙茂, 吴江浩. 微型飞行器的仿生流体力学:昆虫前飞时的气动力和能耗[J]. 航空学报, 2002, 23(5):385-393. SUN M, WU J H. Biomimetic aerodynamics of micro-air vehicles:Aerodynamic force and power requirements in forward flight of insect[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5):385-393(in Chinese).
[21] 丁友, 周洲, 祝小平. 基于图形法的仿生拓扑优化方法[J]. 航空动力学报, 2021, 36(11):2389-2399. DING Y, ZHOU Z, ZHU X P. Bionic topology optimization method based on graph method[J]. Journal of Aerospace Power, 2021, 36(11):2389-2399(in Chinese).
[22] 艾森, 郭瑜超, 聂小华, 等. 零泊松比蜂窝结构一维变形行为[J]. 南京航空航天大学学报, 2021, 53(4):629-636. AI S, GUO Y C, NIE X H, et al. One-dimensional deformation behavior of a honeycomb structure with zero poisson's ratio[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4):629-636(in Chinese).
[23] 李博. 民机加筋壁板仿真模型验证与确认研究[C]//第十三届中国CAE工程分析技术年会,2017. LI B. Verification and validation on simulation models of stiffened panels in commercial aircraft structures[C]//The 13th China CAE Annual Conference, 2017(in Chinese).
[24] 许成伟, 张小雯. 仿真流程和数据管理方法研究与应用[J]. 智能制造, 2020(4):39-43. XU C W, ZHANG X W. Research and application of simulation process and data management method[J]. Intelligent Manufacturing, 2020(4):39-43(in Chinese).
[25] 张峰. 工业软件-推进智能制造的原动力[J]. 工程技术(文摘版)·建筑, 2016(12):36-37. ZHANG F. Industrial software-The driving force for promoting intelligent manufacturing[J]. Engineering Technology (Abstract Edition)·Architecture, 2016(12):36-37(in Chinese).
[26] 钟万勰, 陆仲绩. 事关国家竞争力和国家安全的战略技术[J]. 战略与决策研究, 2007(2):115-119. ZHONG W X, LU Z J. Technology for national competitive power and national security[J]. Strategy & Policy Dicision Research, 2007(2):115-119(in Chinese).
[27] 贺贤土, 赵世荣. 加速发展我国高性能计算的建议[J]. 科研信息化技术与应用, 2008, 3:1-7. HE X T, ZHAO S R. Suggestions for accelerating the development of high-performance computing in my country[J]. Scientific Research Information Technology and Application, 2008, 3:1-7(in Chinese).
[28] TURNER M J, CLOUGH R W, MARTIN H C, et al. Stiffness and deflection analysis of complex structures[J]. Journal of the Aeronautical Sciences, 1956, 23(9):805-823.
[29] NASA. NASTRAN.[EB/OL]. (2017-08-07)[2022-05-17]. https://www.nasa.gov/offices/oct/40-years-of-nasa-spinoff/nastran.
[30] BIKER M, SIMON R. Nastran[EB/OL]. (2019-11-13)[2022-05-17]. https://de.zxc.wiki/wiki/NASTRAN#Historie.
[31] ZIPPIA, Inc. ANSYS History[EB/OL]. (2021-12-14)[2022-05-17].https://www.zippia.com/ansys-careers-792/history/.
[32] LYNN M. Analysis origins-ABAQUS[EB/OL]. (2021-10-14)[2022-05-17]. https://www.nafems.org/blog/posts/analysis-origins-abaqus/.
[33] 杜凯. 有限元分析50年发展之路[EB/OL].(2010-05-09)[2022-05-17]. https://articles.e-works.net.cn/cae/article77369.html. DU K. 50 years of development of finite element analysis[EB/OL].(2010-05-09)[2022-05-17].https://articles.e-works.net.cn/cae/article77369.html.
[34] NABERHAUS J D,WADDOUPS M E. Dynamic characteristics of advanced filamentary composite structures:AFFDL-TR-73-lll[R]. Air Force Flight Dynamics Laboratory, 1974.
[35] ZONA technology. ASTROS-A next generation aircraft design system[EB/OL]. (2017-05-09)[2022-05-17]. https://www.zonatech.com/astros.html.
[36] HEXAGON. MSC software[EB/OL].(2022-03-30)[2022-05-17]. https://www.mscsoftware.com/msc-software.
[37] 高峰. 由发展时间轴看中国CAE软件短板[J]. 中国工业和信息化, 2020(3):36-43. GAO F. Looking at the shortcomings of China's CAE software from the development timeline[J]. China Industry and Information Technology, 2020(3):36-43(in Chinese).
[38] SIEMENS. 西门子LMS软件成功应用于空中客车A350 XWB机型的结构分析[EB/OL].(2014-02-11)[2022-05-17]. https://www.plm.automation.siemens.com/global/zh/our-story/newsroom/siemens-press-release/43713. SIEMENS. Siemens LMS software has been successfully applied to the structural analysis of Airbus A350 XWB[EB/OL].(2014-02-11)[2022-05-17]. https://www.plm.automation.siemens.com/global/zh/our-story/newsroom/siemens-press-release/43713(in Chinese).
[39] 林雪萍. 工业软件简史[M]. 上海:上海社会科学院出版社, 2021:180-200. LIN X P. A brief history of industrial software[M]. Shanghai:Shanghai Academy of Social Sciences Press, 2021:180-200(in Chinese).
[40] SHAFTO M, CONROY M, DOYLE R, et al. Modeling, simulation, information technology and processing roadmap:NASA-2012-Technology area 11[R]. Washington,D.C.:NASA, 2012.
[41] 赵玲. 美国国家科学基金委员会(NSF)资助的计算机科学基础研究[J]. 机器人, 1980, 2(6):79. ZHAO L. Fundamental research in computer science funded by the US National Science Foundation (NSF)[J]. Robotics, 1980, 2(6):79(in Chinese).
[42] 知识自动化. 美国仿真软件的国家意志[EB/OL]. (2018-06-13)[2022-05-17]. http://article.cechina.cn/18/0613/02/20180613025251.htm. Knowledge automation. The national will of American simulation software[EB/OL]. (2018-06-13)[2022-05-17]. http://article.cechina.cn/18/0613/02/20180613025251.htm (in Chinese).
[43] NSF. NSF history wall.[EB/OL] (2018-05-12)[2022-05-17].https://www.nsf.gov/about/history/history-wall.jsp.
[44] 历军. 我国高性能计算科技政策分析——与美国NSCI计划对比[EB/OL]. (2019-03-20)[2022-05-17]. http://cn.chinagate.cn/news/2019-03/20/content_74515235.htm LI J. Analysis of high performance computing technology policy in China-comparison with NSCI program in the United States[EB/OL]. (2019-03-20)[2022-05-17]. http://cn.chinagate.cn/news/2019-03/20/content_74515235.htm (in Chinese).
[45] 高梓萍, 樊秋良, 袁国兴. 美国总统信息技术咨询委员会《计算科学:确保美国竞争力》报告概要[J]. 高性能计算发展与应用, 2006(3):12-20. GAO Z P, FAN Q L, YUAN G X. Summary of the report of the presidential Advisory Committee on information technology, "Computing science:Ensuring American competitiveness"[J]. Development and Application of High Performance Computing, 2006(3):12-20(in Chinese).
[46] 张洪武, 顾元宪, 关振群, 等. 用于有限元分析与优化设计的JIFEX软件[J]. 计算机集成制造系统-CIMS, 2003, 9(S1):160-166. ZHANG H W, GU Y X, GUAN Z Q, et al. JIFEX software for finite element analysis and optimization design[J]. Computer Integrated Manufacturing Systems, 2003, 9(Sup 1):160-166(in Chinese).
[47] 袁明武, 陈璞, 郑东, 等. 微机结构分析通用程序SAP84(版本4.0)[J]. 计算结构力学及其应用, 1995, 12(3):298-300. YUAN M W, CHEN P, ZHENG D, et al. SAP84——A general purpose structural analysis program on microcomputer(Version 4.0)[J]. Computational Structural Mechanics and Its Applications, 1995, 12(3):298-300(in Chinese).
[48] 王锡山. 紫瑞CAE"傻瓜"版软件介绍[J]. 航空工程与维修, 2000(2):49-50. WANG X S. Introduction to Zirui CAE "For Dummies" software[J]. Aviation Engineerging & Mainienance, 2000(2):49-50(in Chinese).
[49] 王绍华. 《建筑工程设计软件包》(BDP)综合研制报告[C]//第三届全国建工系统计算机应用学术交流会, 1986. WANG S H. "Building Engineering Design Software Package" (BDP) comprehensive development report[C]//The Third National Conference on Computer Application in Construction Engineering, 1986(in Chinese).
[50] 梁国平, 唐菊珍. 有限元分析软件平台FEPG[J]. 计算机辅助工程, 2011, 20(3):92-96. LIANG G P, TANG J Z. Finite element analysis software platform FEPG[J]. Computer Aided Engineering, 2011, 20(3):92-96(in Chinese).
[51] 吴存利, 张倩, 段世慧. 加筋板结构强度分析软件STRANAS设计和应用[J]. 强度与环境, 2011, 38(3):36-44. WU C L, ZHANG Q, DUAN S H. Design and application of strength software STRANAS for stiffened panels[J]. Structure & Environment Engineering, 2011, 38(3):36-44(in Chinese).
[52] 薛景川, 焦坤芳. 飞机结构耐久性/损伤容限设计的工程控制[C]//第十二届全国结构工程学术会议, 2003. XUE J C, JIAO K F. Engineering control of aircraft structural durability/damage tolerance design[C]//The 12th National Conference on Structural Engineering, 2003(in Chinese).
[53] 任青梅, 杨志斌, 成竹, 等. 气动加热与结构温度场耦合分析平台研发技术[J]. 强度与环境, 2009, 36(5):33-38. REN Q M, YANG Z B, CHENG Z, et al. Development of the platform for analysis coupling aeroheating and structural temperature field[J]. Structure & Environment Engineering, 2009, 36(5):33-38(in Chinese).
[54] 肖世富,范宣华,牛红攀, 等. 重大装备工程力学并行分析软件平台PANDA研发进展[C].//第十六届全国模态分析与试验学术会议, 2016. XIAO S F, FAN X H, NIU H P, et al. Developing progress of PANDA:A parallel analysis software platform for engineering mechanics of large equipments[C]//The 16th National Conference on Modal Analysis and Testing, 2016(in Chinese).
[55] 史光梅, 何颖波, 吴瑞安, 等. 面向对象有限元并行计算框架PANDA[J]. 计算机辅助工程, 2010, 19(4):8-14. SHI G M, HE Y B, WU R A, et al. Object-oriented finite element parallel computation framework PANDA[J]. Computer Aided Engineering, 2010, 19(4):8-14(in Chinese).
[56] 徐建国, 石正军, 郝志明, 等. 基于PANDA框架的非线性静力学有限元并行计算程序设计和初步验证[J]. 固体力学学报, 2010, 31(S1):294-298. XU J G, SHI Z J, HAO Z M, et al. Design and verification of a nonlinear statics fem parallel computing code based on PANDA framwork[J]. Chinese Journal of Solid Mechanics, 2010, 31(Sup 1):294-298(in Chinese).
[57] 李健, 郝志明, 宁佐贵. 基于PANDA框架的并行有限元模态分析程序开发和应用[J]. 计算机辅助工程, 2011, 20(1):29-32. LI J, HAO Z M, NING Z G. Development and application of parallel program for finite element modal analysis based on PANDA[J]. Computer Aided Engineering, 2011, 20(1):29-32(in Chinese).
[58] 陈成军, 柳阳, 张元章, 等. 基于PANDA的并行显式有限元程序开发[J]. 计算力学学报, 2011, 28(S1):204-207, 214. CHEN C J, LIU Y, ZHANG Y Z, et al. Programming of parallel explicit finite element based on PANDA[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1):204-207, 214(in Chinese).
[59] 张洪武, 陈飙松, 李云鹏, 等. 面向集成化CAE软件开发的SiPESC研发工作进展[J]. 计算机辅助工程, 2011, 20(2):39-49. ZHANG H W, CHEN B S, LI Y P, et al. Advancement of design and implementation of SiPESC for development of integrated CAE software systems[J]. Computer Aided Engineering, 2011, 20(2):39-49(in Chinese).
[60] 曲越, 秦晓钰, 黄海刚, 等. 中美贸易摩擦对中国产业与经济的影响:以2018年美国对华301调查报告为例[J]. 中国科技论坛, 2018(5):128-135. QU Y, QIN X Y, HUANG H G, et al. The impact of China-US trade friction on China's industry and economy based on section 301 investigation report on China in 2018[J]. Forum on Science and Technology in China, 2018(5):128-135(in Chinese).
[61] 中华人民共和国国务院. 新时期促进集成电路产业和软件产业高质量发展的若干策[R/OL].(2020-08-04)[2022-05-17]. http://www.gov.cn/zhengce/content/2020-08/04/content_5532370.html. The State Council of the People's Republic of China. Notice of the state council on printing and distributing several policies for promoting the high-quality development of the integrated circuit industry and software industry in the New Era"[R/OL]. (2020-08-04)[2022-05-17]. http://www.gov.cn/zhengce/content/2020-08/04/content_5532370.html (in Chinese).
[62] 陈璞, 傅向荣, 张群,等. 计算力学科研、教学与CAE软件开发[C]//北京力学会学术年会暨北京振动工程学会学术年会, 2015. CHEN P, FU X R, ZHANG Q, et al. Computational mechanics research, teaching and CAE software development[C]//Academic Annual Meeting of Beijing Mechanics Society and Beijing Vibration Engineering Society, 2015(in Chinese).
[63] GUSTAVSON F G. Two fast algorithms for sparse matrices:Multiplication and permuted transposition[J]. ACM Transactions on Mathematical Software, 1978, 4(3):250-269.
[64] PISSANETSKY S. Spare matrix technology[M]. New York:Academic Press, 1984:23-35.
[65] LAWSON C L, HANSON R J, KINCAID D R, et al. Basic linear algebra subprograms for fortran usage[J]. ACM Transactions on Mathematical Software, 1979, 5(3):308-323.
[66] SLEIJPEN G L G, VAN DER VORST H A. A jacobi-Davidson iteration method for linear eigenvalue problems[J]. SIAM Journal on Matrix Analysis and Applications, 1996, 17(2):401-425.
[67] STEWART G W. A Krylov:Schur algorithm for large eigenproblems[J]. SIAM Journal on Matrix Analysis and Applications, 2002, 23(3):601-614.
[68] DAVIDSON E R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices[J]. Journal of Computational Physics, 1975, 17(1):87-94.
[69] 杨智春, 田玮, 谷迎松, 等. 带集中非线性的机翼气动弹性问题研究进展[J]. 航空学报, 2016, 37(7):2013-2044. YANG Z C, TIAN W, GU Y S, et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2013-2044(in Chinese).
[70] 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3):428-466. HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3):428-466(in Chinese).
[71] 杨佑绪, 吴志刚, 杨超. 飞翼结构构型气动弹性优化设计方法[J]. 航空学报, 2013, 34(12):2748-2756. YANG Y X, WU Z G, YANG C. An aeroelastic optimization design approach for structural configuration of flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2748-2756(in Chinese).
[72] 杨智春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 37(12):3578-3587. YANG Z C, LIU L Y, WANG X C. Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3578-3587(in Chinese).
[73] 王彬文. 民用飞机典型结构静强度分析手册[M]. 西安:西北工业大学出版社, 2021:60-80. WANG B W. Handbook for static strength analysis of typical structures of civil aircraft[M]. Xi'an:Northwestern Polytechnical University Press, 2021:60-80(in Chinese).
[74] 赵峻峰, 邹新煌, 武建国. 基于网络数据库和CAESAM框架的飞机结构强度校核平台[C]//第九届中国CAE工程分析技术年会, 2013. ZHAO J F, ZOU X H, WU J G. Integrated strength analysis platform for aircraft based on web database and CAESAM[C]//The 9th China CAE Engineering Analysis Technology Annual Conference, 2013(in Chinese).
[75] 汤超, 乔玉炜. 基于MSC.Patran的飞机壁板结构强度校核系统[J]. 科学技术与工程, 2012, 12(11):2755-2759. TANG C, QIAO Y W. Strength evaluation system for aircraft panel structures based on MSC.Patran[J]. Science Technology and Engineering, 2012, 12(11):2755-2759(in Chinese).
[76] 王晓辉, 王立凯, 张生贵. 蜂窝夹层结构强度校核模块的设计与实现[J]. 工程与试验, 2017, 57(4):1-5, 73. WANG X H, WANG L K, ZHANG S G. Design and realization of strength checking module of honeycomb sandwich structure[J]. Engineering & Test, 2017, 57(4):1-5, 73(in Chinese).
[77] 艾森, 王晓辉, 许向彦, 等. 飞机金属加筋壁板结构强度校核软件设计与实现[J]. 机械科学与技术, 2022, 41(2):322-328. AI S, WANG X H, XU X Y, et al. Design and implementation of strength check software for aircraft metal stiffened panel[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(2):322-328(in Chinese).
[78] 艾森, 许向彦, 王立凯. 基于JSON格式的强度校核软件数据交互接口设计[J]. 软件导刊, 2021, 20(10):26-30. AI S, XU X Y, WANG L K. Design of data interaction interface of strength check software based on JSON format[J]. Software Guide, 2021, 20(10):26-30(in Chinese).
[79] 费莲, 吴敬凯, 孙明琦, 等. 基于Laminate Tools的机载天线罩力学仿真和优化设计[J]. 电子机械工程, 2014, 30(4):61-64. FEI L, WU J K, SUN M Q, et al. Mechanical simulation and optimization design of airborne antenna radome based on Laminate Tools[J]. Electro-Mechanical Engineering, 2014, 30(4):61-64(in Chinese).
[80] 袁国青.复合材料结构CAE教程[M]. 上海:同济大学出版社, 2018:45-60. YUAN G Q. Composite material structure CAE tutorial[M]. Shanghai:Tongji University Press, 2018:45-60(in Chinese).
[81] DOGHRI I, ADAM L, BILGER N. Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method[J]. International Journal of Plasticity, 2010, 26(2):219-238.
[82] HEY A J G, TANSLEYS, TOLLE K M. The fourth paradigm:Data-intensive scientific discovery[M]. Redmond:Microsoft Research,2009:20-30.
[83] 韩贝. SQLite数据库研究与应用[D]. 南京:南京邮电大学, 2019:5-15. HAN B. Research and application of SQLite database[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019:5-15(in Chinese).
[84] 岑冬梅, 陈和平, 张剑波. 基于SQLite的二次封装方法在车载导航系统中的应用[J]. 计算机系统应用, 2008, 17(10):24-27. CEN D M, CHEN H P, ZHANG J B. Application of secondary encapsulating methods based on SQLite in the vehicle navigation system[J]. Computer Systems & Applications, 2008, 17(10):24-27(in Chinese).
[85] CHRISTODOUBLE J A. Integrated computational materials engineering and materials genome initiative:Accelerating materials innovation[J]. Advanced Materials & Processes, 2013, 171(3):28-31.
[86] DE PABLO J J, JONES B, KOVACS C L, et al. The materials genome initiative, the interplay of experiment, theory and computation[J]. Current Opinion in Solid State and Materials Science, 2014, 18(2):99-117.
[87] 向勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电子科技大学学报, 2016, 45(4):634-649. XIANG Y, YAN Z K, ZHU Y L, et al. Progress on materials genome technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4):634-649(in Chinese).
[88] 王卓, 杨小渝, 郑宇飞, 等. 材料基因组框架下的材料集成设计及信息平台初探[J]. 科学通报, 2013, 58(35):3733-3744. WANG Z, YANG X Y, ZHENG Y F, et al. Preliminary exploration of material integrated design and information platform under the framework of materials genome[J]. Chinese Science Bulletin, 2013, 58(35):3733-3744(in Chinese).
[89] 刘波, 黄晓艳, 查海波. 金属材料常用力学性能的测定[J]. 铸造技术, 2013, 34(3):286-289. LIU B, HUANG X Y, ZHA H B. Determination of common mechanical property of metallic materials[J]. Foundry Technology, 2013, 34(3):286-289(in Chinese).
[90] 《飞机设计手册》总编委会. 飞机设计手册第3册:材料[M]. 北京:航空工业出版社,1996:537-573. General Editorial Board of Aircraft Design Manual. Aircraft design manual volume 3:Materials[M]. Beijing:Aviation Industry Press, 1996:537-573(in Chinese).
[91] 赵旷怡, 郝晓东, 周石光. 金属材料数据信息系统的支撑技术[J]. 钢铁研究学报, 2012, 24(11):1-5. ZHAO K Y, HAO X D, ZHOU S G. Supporting technology on data information system of materials[J]. Journal of Iron and Steel Research, 2012, 24(11):1-5(in Chinese).
[92] GREER R, FERENCZ R. NAFEMS finite element benchmarks for MDG code verification[R]. Oak Ridge:Office of Scientific and Technical Information (OSTI), 2004.
[93] BENAOUALI A, KACHEL S. An automated CAD/CAE integration system for the parametric design of aircraft wing structures[J]. Journal of Theoretical and Applied Mechanics, 2017:447.
[94] 代光月, 曾磊, 刘深深, 等. 考虑力/热/结构多场耦合效应的飞行弹道预测[J]. 航空学报, 2018, 39(12):122346. DAI G Y, ZENG L, LIU S S, et al. Prediction of flight trajectory considering fluid-thermal-structural coupling effect[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122346(in Chinese).
[95] 童自翔, 李明佳, 李冬. 导热-辐射耦合传热的多尺度分析和数值模型[J]. 航空学报, 2021, 42(9):625729. TONG Z X, LI M J, LI D. Multiscale analysis and numerical model for coupled conduction-radiation heat transfer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):625729(in Chinese).
[96] NIELSEN E J, DISKIN B. High-performance aerodynamic computations for aerospace applications[J]. Parallel Computing, 2017, 64:20-32.
Outlines

/