ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Nested focusing X-ray telescope with lightweight and large photon collecting area
Received date: 2021-11-17
Revised date: 2021-12-27
Accepted date: 2022-03-08
Online published: 2022-05-09
Supported by
National Key Research and Development Program of China(2017YFB0503300);National Natural Science Foundation of China(41604152);Youth Innovation Promotion Association CAS(2018178)
Nested focusing X-ray telescopes have a wide range of demands in the fields of pulsar autonomous navigation and X-ray astronomy. The optical optimization design of a compact, large-area, and nested focusing X-ray telescope is carried out in this paper, and the process of thermoforming, precision mirror cutting, and nested coaxial confocal of X-ray grazing incidence mirrors are successfully explored based on lightweight flat glass. A lightweight, large-area, Nested Focusing X-ray Telescope (NFXT) has been developed. The axial length of single-layer mirror of NFXT is 300 mm, and the thickness is 0.3 mm. The Ir metal film is sputtered on the reflective surface of curved mirror with 300 nm thickness, and the roughness of the metal coating is better than 0.3 nm(rms). The NFXT has 11 layered nested mirrors in the radial direction, with each layer consisting of three equal sectors in the circumference direction. The inner 8 layers are the conical mirrors that are approximately parabolic, and the outer 3 layers are parabolic mirrors. The 11 layers of mirrors are assembled into the same axis and same focus. The net geometric area of the NFXT engineering prototype is 175 cm2, with the effective area being 130 cm2@1.5keV, and the focal spot radius of 0° field of view being 0.85 mm (EoE=50%). The engineering prototype weighs 4.25 kg, having an envelope size of diameter×height 200 mm×326 mm, 0.2-12 keV energy response range and back working distance of 1 300 mm. The breakthrough of the NFXT technology provides key technical support for the domestic pulsar navigation experiments and advanced X-ray astronomical satellites.
Baoquan LI , Haitao LI , Yang CAO , Peng SANG , Yaning LIU , Daochun YU . Nested focusing X-ray telescope with lightweight and large photon collecting area[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526671 -526671 . DOI: 10.7527/S1000-6893.2022.26671
1 | SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63. |
2 | 帅平, 李明, 陈绍龙. X射线脉冲星导航系统原理与方法[M]. 北京: 中国宇航出版社, 2009. |
SHUAI P, LI M, CHEN S L. Principle and method of X-ray pulsar navigation system[M]. Beijing: China Aerospace Publishing House, 2009 (in Chinese). | |
3 | WOOD K S, DETERMAN J R, RAY P S, et al. Using the Unconventional Stellar Aspect (USA) experiment on ARGOS to determine atmospheric parameters by X-ray occultation[C]∥ International Symposium on Optical Science and Technology. San Francisco: SPIE, 2002: 258-265. |
4 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results: AIAA-2018-2538[R]. Reston: AIAA, 2018. |
5 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
6 | 李连升, 梅志武, 吕政欣, 等. 掠入射聚焦型X射线脉冲星望远镜及在轨数据分析[J]. 兵器装备工程学报, 2017, 38(12): 175-179. |
LI L S, MEI Z W, LYU Z X, et al. Grazing incidence focusing X-ray pulsar telescope and analysis of In-orbit observation data[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 175-179 (in Chinese). | |
7 | 张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据处理与分析[J]. 宇航学报, 2018, 39(4): 411-417. |
ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics, 2018, 39(4): 411-417 (in Chinese). | |
8 | 周庆勇, 魏子卿, 姜坤, 等. 一种聚焦型X射线探测器在轨性能标定方法[J]. 物理学报, 2018, 67(5): 050701. |
ZHOU Q Y, WEI Z Q, JIANG K, et al. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar[J]. Acta Physica Sinica, 2018, 67(5): 050701 (in Chinese). | |
9 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003. |
10 | 周庆勇, 魏子卿, 姜坤, 等. 面向脉冲星导航的聚焦型X射线探测器测试标定方法研究[J]. 光子学报, 2020, 49(6): 27-39. |
ZHOU Q Y, WEI Z Q, JIANG K, et al. Research on the test and calibration method of a focusing X-ray detector for pulsar navigation[J]. Acta Photonica Sinica, 2020, 49(6): 27-39 (in Chinese). | |
11 | 周庆勇, 盛立志, 魏子卿, 等. 微通道板型X射线探测器的脉冲信号探测能力实验分析[J]. 光子学报, 2018, 47(9): 175-185. |
ZHOU Q Y, SHENG L Z, WEI Z Q, et al. Experimental analysis of pulse signal detection capability of the MCP X-ray detector[J]. Acta Photonica Sinica, 2018, 47(9): 175-185 (in Chinese). | |
12 | TURNER M J L, THOMAS H D, PATCHETT B E, et al. The large area counter on Ginga[J]. Publications of the Astronomical Society of Japan, 1989, 41: 345-372. |
13 | JAHODA K, MARKWARDT C B, RADEVA Y, et al. Calibration of the Rossi X-ray timing explorer proportional counter array[J]. The Astrophysical Journal Letters Supplement Series, 2006, 163(2): 401-423. |
14 | SHAPOSHNIKOV N, JAHODA K, MARKWARDT C, et al. Advances in therxteproportional counter array calibration: Nearing the statistical limit[J]. The Astrophysical Journal Letters, 2012, 757(2): 159. |
15 | GORENSTEIN P. Grazing incidence telescopes for X-ray astronomy[J]. Optical Engineering, 2012, 51(1): 011010. |
16 | ZHANG W W, BISKACH M P, BLAKE P N, et al. High resolution and high throughput X-ray optics for future astronomical missions[C]∥ SPIE Optical Engineering + Applications. San Diego: SPIE, 2013: 231-243. |
17 | 黎月明, 邓楼楼, 杨健, 等. 电铸镍Wolter-I型光学系统制造技术发展综述[J]. 空间控制技术与应用, 2020, 46(2): 8-15. |
LI Y M, DENG L L, YANG J, et al. Manufacturing technology and application development of electroformed nickel Wolter-I optical system[J]. Aerospace Control and Application, 2020, 46(2): 8-15 (in Chinese). | |
18 | 李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报, 2018, 54(11): 49-60. |
LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering, 2018, 54(11): 49-60 (in Chinese). | |
19 | 刘宏颖, 穆宝忠, 王占山. Wolter-Ⅰ型X射线天文望远镜的光学设计[J]. 光学仪器, 2012, 34(6): 31-36. |
LIU H Y, MU B Z, WANG Z S. Optical design of Wolter-Ⅰ X-ray astronomical telescope[J]. Optical Instruments, 2012, 34(6): 31-36 (in Chinese). | |
20 | 李保权, 朱光武, 王世金, 等. 太阳X-EUV成像望远镜[J]. 地球物理学报, 2005, 48(2): 235-242. |
LI B Q, ZHU G W, WANG S J, et al. The solar X-EUV imaging telescope[J]. Chinese Journal of Geophysics, 2005, 48(2): 235-242 (in Chinese). | |
21 | 李保权. 静止轨道卫星太阳X-EUV成像望远镜[D]. 北京: 中国科学院研究生院, 2004. |
LI B Q. The solar X-EUV imaging telescope aboard the geostationary orbit satellite[D]. Beijng: Graduate School of Chinese Academy of Sciences, 2004 (in Chinese). | |
22 | 王波, 杨彦佶, 王殿龙, 等. X射线聚焦镜的超精密制造[J]. 光学 精密工程, 2021, 29(8): 1839-1846. |
WANG B, YANG Y J, WANG D L, et al. Ultra-precision manufacture of X-ray focusing mirror[J]. Optics and Precision Engineering, 2021, 29(8): 1839-1846 (in Chinese). | |
23 | 茹巧巧. 基于条纹反射法的X射线嵌套镜模具面形检测[D]. 苏州: 苏州大学, 2019. |
RU Q Q. Shape measurement of X-ray nested mirror moulds based on stripe reflection method[D]. Suzhou: Soochow University, 2019 (in Chinese). | |
24 | DE CHAMBURE D, LAINE R, VAN KATWIJK K, et al. Lessons learned from the development of the XMM optics[C]∥ Optical Systems Design and Production. San Francisco: SPIE, 1999: 2-17. |
25 | CITTERIO O, CONCONI P, GHIGO M, et al. Development of soft and hard X-ray optics for astronomy[C]∥ International Symposium on Optical Science and Technology. San Francisco: SPIE, 2000: 43-56. |
26 | PARESCHI G, CITTERIO O, GHIGO M, et al. Replication by Ni electroforming approach to produce the Con-X/HXT hard X-ray mirrors[C]∥ Astronomical Telescopes and Instrumentation. San Francisco: SPIE, 2003: 528-537. |
27 | ATKINS C, RAMSEY B, KILARU K, et al. X-ray optic developments at NASA's MSFC[C]∥ SPIE Optics + Optoelectronics. San Francisco: SPIE, 2013: 185-193. |
28 | ZHANG W W, BISKACH M P, BLAKE P N, et al. Next generation astronomical X-ray optics: High angular resolution, light weight, and low production cost[C]∥ SPIE Astronomical Telescopes + Instrumentation. San Francisco: SPIE, 2012: 206-214. |
29 | GHIGO M, PROSERPIO L, BASSO S, et al. Slumping technique for the manufacturing of a representative X-ray grazing incidence mirror module for future space missions[C]∥ SPIE Optifab. San Francisco: SPIE, 2013: 417-430. |
30 | CRAIG W W, AN H J, BLAEDEL K L, et al. Fabrication of the NuSTAR flight optics[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2011: 151-164. |
31 | KOGLIN J E, AN H J, BLAEDEL K L, et al. NuSTAR hard X-ray optics design and performance[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2009: 107-114. |
32 | GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star Interior Composition Explorer (NICER): An Explorer mission of opportunity for soft X-ray timing spectroscopy[C]∥ SPIE Astronomical Telescopes + Instrumentation. San Francisco: SPIE, 2012: 322-329. |
33 | OKAJIMA T, SOONG Y, BALSAMO E R, et al. Performance of NICER flight X-ray concentrator[C]∥ SPIE Astronomical Telescopes + Instrumentation. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. San Francisco:SPIE,2016: 1495-1501. |
34 | PETRE R, SERLEMITSOS P J. Conical imaging mirrors for high-speed X-ray telescopes[J]. Applied Optics, 1985, 24(12): 1833. |
35 | AWAKI H, OGASAKA Y, KUNIEDA H, et al. Current status of the Astro-H X-ray Telescope system[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2009: 28-35. |
36 | BALSAMO E, GENDREAU K, ARZOUMANIAN Z, et al. Concept study X-ray testing for NICER's X-ray concentrators[C]∥ SPIE Optical Engineering + Applications. San Francisco: SPIE, 2013: 587-594. |
37 | SERLEMITSOS P J. Conical foil X-ray mirrors: Performance and projections[J]. Applied Optics, 1988, 27(8): 1447-1452. |
/
〈 |
|
〉 |