Challenge of aircraft design under operational conditions of supercooled large water droplet icing

  • Yong CHEN ,
  • Weiliang KONG ,
  • Hong LIU
Expand
  • 1.Commercial Aircraft Corporation of China,Ltd. ,Shanghai 210016,China
    2.School of Aeronautics and Astronautics,Shanghai Jiaotong University,Shanghai 200240,China
E-mail: kongwl@sjtu.edu.cn

Received date: 2022-01-21

  Revised date: 2022-02-21

  Accepted date: 2022-04-08

  Online published: 2022-04-24

Supported by

Youth Program of National Natural Science Foundation of China(51906143);National Science and Technology Project;National Key Research and Development Program of China(2020YFA0712001)

Abstract

The Supercooled Large Droplet (SLD) environment is a common icing condition, causing many air accidents and drawing extensive attention because of the abnormal icing and rapid crash. Over the past two decades, considerable research has been carried out on its icing mechanism, simulation methods and test technologies. However, little progress has been achieved on the icing protection and airworthiness certification. The SLD icing airworthiness requirement is a major challenge for large civil aircraft of China. More importantly, the question whether strict airworthiness requirements impact the operation capacity of aircraft has not been explored. This paper introduces the progress of icing mechanisms, numerical technologies, ice risk assessment and anti-icing methods from basic research to engineering applications. Then the aircraft icing protection design and operation strategy are discussed. It is concluded that the safety design of aircraft under the SLD icing condition has high risks and costs due to the immature SLD icing safety technologies such as the icing numerical/experimental simulation, icing conditions sensing, and the high-efficiency anti-icing. Improvements only in the anti-icing capability will have a low benefit. Instead, the ability of icing detection and icing condition detection, targeted icing protection and icing tolerance needs to be enhanced. Therefore, it is necessary to make breakthroughs in the techniques of accurate icing protection, accurate icing detection and experimental simulation of supercooled large water droplets, while these breakthroughs depend on the development of fundamental research such as simulation of supercooled large droplets conditions and the runback icing mechanism.

Cite this article

Yong CHEN , Weiliang KONG , Hong LIU . Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(1) : 626973 -626973 . DOI: 10.7527/S1000-6893.2022.26973

References

1 National Transportation Safety Board. Aircraft accident report. In-flight icing encounter and loss of control simmons airlines, d.b.a. American Eagle Flight 4184 Avions de Transport Regional (ATR) model 72.212, N401am Roselawn, Indiana October 31, 1994. Volume 1: Safty Board Report: PB96-101040I, NTSB/AAR-96/01, DCA95MA001[R]. Washington, D.C.: National Transportation Safety Board, 1996.
2 Aciation Safety Council. GE 791 Occurrence Investigation Report: Volume 2. In-flight icing encounter and crash into the sea, Transasia Airways Flight 791, ATR72.200, B-22708, 17 kilometers southwest of Makung city, Penghu islands, Taiwan: ASC-AOR-05-04-001[R]. Taipei: Aciation Safety Council, 2005.
3 ISAAC G, COBER S, KOROLEV A, et al. Canadian freezing drizzle experiment[C]∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999: 1999-492.
4 ISAAC G, COBER S, STRAPP J, et al. Preliminary results from the alliance icing research study (AIRS)[C]∥ 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001: 2001-393.
5 COBER S, ISAAC G. Estimating maximum aircraft icing environments using a large database of in-situ observations[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 2006-266.
6 HAUF T, SCHR?DER F. Aircraft icing research flights in embedded convection[J]. Meteorology and Atmospheric Physics, 2006, 91(1-4): 247-265.
7 王磊, 李成才, 赵增亮, 等. 飞机积冰云微物理特征分析及监测技术研究[J]. 气象, 2014, 40(2): 196-205.
  WANG L, LI C C, ZHAO Z L, et al. Microphysical property analysis and detection of air icing clonds[J]. Meteorological Monthly, 2014, 40(2): 196-205 (in Chinese).
8 HILL E. Overview of federal aviation administration aviation safety research for aircraft icing[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 2006-81.
9 李焱鑫, 顾新. 民机SLD结冰研究和适航验证的发展与挑战[J]. 中国民航大学学报, 2020, 38(4): 48-53.
  LI Y X, GU X. Development and challenges of supercooled large drop icing research for civil airplane airworthiness certification[J]. Journal of Civil Aviation University of China, 2020, 38(4): 48-53 (in Chinese).
10 Ice Protection Harmonization Working Group (IPHWG). Task 2 working Group report on supercooled large droplet rulemaking[M]. Washingtong, D.C.: Federal Aviation Administration, 2005.
11 TAN S, PAPADAKIS M. General effects of large droplet dynamics on ice accretion modeling[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 2003-392.
12 GARCIA-MAGARI?O A, SOR S, VELAZQUEZ A. Breakup criterion for droplets in the vicinity of a leading edge of an airfoil[C]∥ 9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017: 2017-4479.
13 GARCIA-MAGARI?O A, PALACIOS J, MENDI S. Comparison of deformation models for droplets in the vicinity of an airfoil[C]?∥ AIAA AVIATION 2021 FORUM. Reston: AIAA, 2021: 2021-3153.
14 SOR S, GARCIA-MAGARI?O A, MOROTE P, et al. Influence of the deformation in the collection efficiency on a profile applying DRD model[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 2021-2642.
15 QUERO M, HAMMOND D, PURVIS R, et al. Analysis of super-cooled water droplet impact on a thin water layer and ice growth[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 2006-466.
16 PURVIS R, SMITH F. Large droplet impact on water layers[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004: 2004-414.
17 BERTHOUMIEU P, DEJEAN B. Experimental investigation of SLD impact phenomena[C]∥ 7th European Conference for Aeronautics and Space Sciences. Paris: EUCASSE, 2017: 2017-512.
18 TRONTIN P, VILLEDIEU P. Revisited model for supercooled large droplet impact onto a solid surface[J]. Journal of Aircraft, 2016, 54(3): 1189-1204.
19 胡文月, 葛俊锋, 叶林, 等. 一种图像式过冷大水滴结冰探测系统[J]. 仪表技术与传感器, 2015(11): 74-77, 84.
  HU W Y, GE J F, YE L, et al. Supercooled large droplet icing detection system based on image processing technology[J]. Instrument Technique and Sensor, 2015(11): 74-77, 84 (in Chinese).
20 章儒宸, 葛俊锋, 桂康, 等. 双梭型SLD探测器结冰特性研究[J]. 民用飞机设计与研究, 2021(2): 6-17.
  ZHANG R C, GE J F, GUI K, et al. Icing characteristics of dual-spindle structure ice detector[J]. Civil Aircraft Design & Research, 2021(2): 6-17 (in Chinese).
21 张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报, 2013, 31(2): 144-150.
  ZHANG C, KONG W L, LIU H. An investigation on the breakup model for icing simulation of supercooled large droplets[J]. Acta Aerodynamica Sinica, 2013, 31(2): 144-150 (in Chinese).
22 王桥, 肖京平, 刘森云, 等. 过冷大水滴变形及阻力特性的温度影响实验研究[J]. 实验流体力学, 2016, 30(3): 21-26.
  WANG Q, XIAO J P, LIU S Y, et al. Experimental study on temperature effecton deformation and drag characteristics of supercooled large droplet[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 21-26 (in Chinese).
23 ZHANG C, LIU H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6): 062107.
24 MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2001, 14(1): 240-256.
25 WANG G, ROTHMAYER A P. Thin water films driven by air shear stress through roughness[J]. Computers & Fluids, 2009, 38(2): 235-246.
26 KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface—II. Transition and turbulent heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5): 499-511.
27 杜雁霞, 桂业伟, 柯鹏, 等. 飞机结冰冰型微结构特征的分形研究[J]. 航空动力学报, 2011, 26(5): 997-1002.
  DU Y X, GUI Y W, KE P, et al. Investigation on the ice-type microstructure characteristics of aircraft icing based on the fractal theories[J]. Journal of Aerospace Power, 2011, 26(5): 997-1002 (in Chinese).
28 KONG W L, LIU H. A theory on the icing evolution of supercooled water near solid substrate[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1217-1236.
29 易贤, 周志宏, 杜雁霞, 等. 考虑相变时间效应的结冰试验相似参数[J]. 实验流体力学, 2016, 30(2): 14-19.
  YI X, ZHOU Z H, DU Y X, et al. An icing scaling parameter with the effects of phase change time[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 14-19 (in Chinese).
30 XU Q, LI Z Y, WANG J, et al. Characteristics of single droplet impact on cold plate surfaces[J]. Drying Technology, 2012, 30(15): 1756-1762.
31 JIN Z Y, CHENG X Y, YANG Z G. Experimental investigation of the successive freezing processes of water droplets on an ice surface[J]. International Journal of Heat and Mass Transfer, 2017, 107: 906-915.
32 JIN Z Y, ZHANG H H, YANG Z G. Experimental investigation of the impact and freezing processes of a water droplet on an ice surface[J]. International Journal of Heat and Mass Transfer, 2017, 109: 716-724.
33 KANG B S, LEE D H. On the dynamic behavior of a liquid droplet impacting upon an inclined heated surface[J]. Experiments in Fluids, 2000, 29(4): 380-387.
34 JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615.
35 YANG G M, GUO K H, LI N. Freezing mechanism of supercooled water droplet impinging on metal surfaces[J]. International Journal of Refrigeration, 2011, 34(8): 2007-2017.
36 WANG L P, KONG W L, WANG F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831-842.
37 SUN M M, KONG W L, WANG F X, et al. Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118431.
38 KONG W L, WU H C, BIAN P X, et al. A diffusion-enhancing icing theory for the freezing transition of supercooled large water droplet in impact[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122471.
39 WRIGHT W, POTAPCZUK M. Semi-empirical modelling of SLD physics[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004: 2004-412.
40 BILODEAU D R, HABASHI W G, BARUZZI G S, et al. Eulerian modeling of SLD splashing and bouncing[J]. Journal of Aircraft, 2015, 52(5): 1611-1624.
41 TRONTIN P, BLANCHARD G, KONTOGIANNIS A, et al. Description and assessment of the new ONERA 2D icing suite IGLOO2D[C]∥ 9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017: 2017-3417.
42 TURNER J E, KINZEL M P, CAVAINOLO B. A multistage approach to computational modeling of large droplet breakup[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 2020-1575.
43 BELLOSTA T, GUARDONE A, GORI G, et al. Uncertainty quantification for in-flight ice accretion under Appendix-C and Appendix-O conditions[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 2021-2645.
44 KE P, WANG X X. Super-cooled large droplets consideration in the droplet impingement simulation for aircraft icing[J]. Procedia Engineering, 2011, 17: 151-159.
45 WANG C, CHANG S, LENG M, et al. A two-dimensional splashing model for investigating impingement characteristics of supercooled large droplets[J]. International Journal of Multiphase Flow, 2016, 80: 131-149.
46 WANG Z Z. Calculation of airfoil anti-icing heat load in SLD conditions[C]∥ 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015: 2015-3417.
47 朱程香, 孙志国, 付斌, 等. 水滴多尺寸分布对水滴撞击特性和结冰增长的影响[J]. 南京航空航天大学学报, 2010, 42(5): 620-624.
  ZHU C X, SUN Z G, FU B, et al. Effects of multi-dispersed droplet distribution on droplet impingement and ice accretion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 620-624 (in Chinese).
48 符澄, 徐兵兵, 彭强, 等. 结冰风洞中SLD模拟方法及其实验验证研究[C]∥ 中国力学大会论文集(CCTAM 2019). 北京: 中国力学学会, 2019: 2851-2857.
  FU C, XU B B, PENG Q, et al. SLD simulation method and experimental verification in icing wind tunnel[C]∥ Proceedings of the Chinese Congress of Mechanics (CCTAM 2019). Beijing: Chinese Society of Mechanics, 2019: 2851-2857.
49 VAN ZANTE J, IDE R, STEEN L C. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]∥ 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012: 2012-2933.
50 KING-STEEN L E, TIMKO E N, IDE R F, et al. NASA glenn icing research tunnel: 2018 change in drop-sizing equations due to change in cloud droplet probe sample area: NASA/TM—2019-219990[R]. Washington, D.C.: National Aeronautics and Space Administration, 2019.
51 ORCHARD D M, CLARK C, OLESKIW M. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel[C]∥ SAE Technical Paper Series. Warrendale: SAE International, 2015: 2015-01-2092.
52 ESPOSITO B M, BROWN K J, BACHALO W D. Application of optical methods for icing wind tunnel cloud simulation extension to supercooled large droplets[C]∥ 23rd Annual Conference on Liquid Atomization and Spray System. Ventura: ILASS, 2011.
53 符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学, 2017, 31(4): 1-7.
  FU C, SONG W P, PENG Q, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7 (in Chinese).
54 沈浩, 韩冰冰, 刘振侠. 运输类飞机结冰适航合格审定[M]. 上海: 上海交通大学出版社, 2018.
  SHEN H, HAN B B, LIU Z X. Airworthiness certification of transport aircraft icing[M]. Shanghai: Shanghai Jiao Tong University Press, 2018 (in Chinese).
55 郭向东, 王梓旭, 李明, 等. 结冰风洞中液滴过冷特性数值研究[J]. 航空学报, 2017, 38(10): 121254.
  GUO X D, WANG Z X, LI M, et al. Numerical study of supercooling characteristics of droplet in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121254 (in Chinese).
56 郭向东, 柳庆林, 刘森云, 等. 结冰风洞中过冷大水滴云雾演化特性数值研究[J]. 航空学报, 2020, 41(8): 123655.
  GUO X D, LIU Q L, LIU S Y, et al. Numerical study of supercooled large droplet cloud evolution characteristics in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123655 (in Chinese).
57 ROCCO E T, HAN Y Q, KREEGER R, et al. Super-cooled large droplet experimental reproduction, ice shape modeling, and scaling method assessment[J]. AIAA Journal, 2021, 59(4): 1277-1295.
58 BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362.
59 李焱鑫, 张辰, 刘洪, 等. 大粒径过冷水溢流结冰的翼型气动影响分析[J]. 空气动力学学报, 2014, 32(3): 376-382.
  LI Y X, ZHANG C, LIU H, et al. Aerodynamic effects of supercooled large droplet runback ice on airfoils[J]. Acta Aerodynamica Sinica, 2014, 32(3): 376-382 (in Chinese).
60 LEE S, BRAGG M B. Experimental investigation of simulated large-droplet ice shapes on airfoil aerodynamics[J]. Journal of Aircraft, 1999, 36(5): 844-850.
61 LEE S, BRAGG M. Effects of simulated-spanwise-ice shapes on airfoils―Experimental investigation[C]∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999: 1999-92.
62 BROEREN A P, BRAGG M B. Effect of airfoil geometry on performance with simulated intercycle ice accretions[J]. Journal of Aircraft, 2005, 42(1): 121-130.
63 史刚. 冰脊对Y-8飞机副翼铰链力矩的影响分析[J]. 飞行力学, 2015, 33(4): 364-367, 380.
  SHI G. Effect of ridge ice on aileron hinge moment of Y-8 aircraft[J]. Flight Dynamics, 2015, 33(4): 364-367, 380 (in Chinese).
64 WHALEN E A, BROEREN A P, BRAGG M B. Aerodynamics of scaled runback ice accretions[J]. Journal of Aircraft, 2008, 45(2): 591-603.
65 GURBACKI H M. Ice-induced unsteady flowfield effects on airfoil performance[M]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 2003.
66 LEE S, DUNN T, GURBACKI H, et al. An experimental and computational investigation of spanwise-step-ice shapes on airfoil aerodynamics[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: 1998-490.
67 PAN J P, LOTH E. Detached eddy simulations for iced airfoils[J]. Journal of Aircraft, 2005, 42(6): 1452-1461.
68 BROEREN A P, WHALEN E A, BUSCH G T, et al. Aerodynamic simulation of runback ice accretion[J]. Journal of Aircraft, 2010, 47(3): 924-939.
69 ZHANG Y, HABASHI W G, KHURRAM R A. Zonal detached-eddy simulation of turbulent unsteady flow over iced airfoils[J]. Journal of Aircraft, 2016, 53(1): 168-181.
70 张恒, 李杰, 龚志斌. 基于IDDES方法的翼型结冰失速分离流动数值模拟[J]. 空气动力学学报, 2016, 34(3): 283-288.
  ZHANG H, LI J, GONG Z B. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. Acta Aerodynamica Sinica, 2016, 34(3): 283-288 (in Chinese).
71 ZHANG H, JIE L I. The numerical study on separation flow field around iced airfoil under stall conditions with hybrid RANS/LES methods[C]∥ 6th Symposium on Hybrid RANS-LES Methods. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2016:96.
72 XIAO M C, ZHANG Y F, ZHOU F. Numerical study of iced airfoils with horn features using large-eddy simulation[J]. Journal of Aircraft, 2018, 56(1): 94-107.
73 禹志龙, 李颖晖, 郑无计, 等. 复杂结冰环境下飞机鲁棒飞行安全包线分析[J]. 航空学报, 2020, 41(1): 123223.
  YU Z L, LI Y H, ZHENG W J, et al. Robust flight safe envelope analysis for aircraft under complex icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123223 (in Chinese).
74 赵宾宾, 黎先平, 李杰, 等. 基于容冰概念的民机结冰保护系统设计方法研究综述[J]. 西北工业大学学报, 2021, 39(4): 731-738.
  ZHAO B B, LI X P, LI J, et al. Research review on design method of ice protection system for civil aircraft based on ice-tolerant concept[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 731-738 (in Chinese).
75 张杰, 周磊, 张洪, 等. 飞机结冰探测技术[J]. 仪器仪表学报, 2006, 27(12): 1578-1586.
  ZHANG J, ZHOU L, ZHANG H, et al. Aircraft icing detection technology[J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1578-1586 (in Chinese).
76 张洪, 张文倩, 郑英. 过冷大水滴结冰探测技术研究进展[J]. 实验流体力学, 2016, 30(3): 33-39.
  ZHANG H, ZHANG W Q, ZHENG Y. Research progress on supercooled large droplet icing detection technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 33-39 (in Chinese).
77 DEILER C, FEZANS N. Performance-based ice detection methodology[J]. Journal of Aircraft, 2020, 57(2): 209-223.
78 VAN ZANTE J F, STRAPP J W, ESPOSITO B, et al. SLD instrumentation in icing wind tunnels—Investigation overview[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 2021-2647.
79 MINGIONE G, IULIANO E, GUFFOND D, et al. EXTICE: EXTreme icing environement[C]∥ SAE Technical Paper Series. Warrendale: SAE International, 2011: 2011-38-0063.
80 LILIE L E, BOULEY D, SIVO C P, et al. Test results for the SEA ice crystal detector (ICD) under SLD conditions at the NASA IRT[C]∥ AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 2021-2654.
81 STEEN L C E, IDE R F, VAN ZANTE J F. An assessment of the icing blade and the SEA multi-element sensor for liquid water content calibration of the NASA GRC icing research tunnel[C]∥ 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016: 2016-4051.
82 陈若冰, 何舟东, 白茹. 结冰传感器研究现状与应用分析[C]∥ 第十八届中国航空测控技术年会论文集. 北京: 中国航空学会, 2021: 31-35.
  CHEN R B, HE Z D, BAI R. Current research and application of icing sensors[C]∥ Proceedings of the 18th China Aviation Measurement and Control Technology Annual Conference. Beijing: Chinese Aeronautical Society, 2021: 31-35 (in Chinese).
83 桂康, 葛俊锋, 叶林. 一种过冷大水滴结冰探头及探测器: CN112550723A[P]. 2021-03-26.
  GUI K, GE J F, YE L. Supercooled large water drop icing probe and detector: CN112550723A[P]. 2021-03-26 (in Chinese).
84 易贤, 周志宏, 朱国林, 等. 一种过冷大水滴结冰探测器的设计方法及探测器: CN104354867A[P]. 2015-02-18.
  YI X, ZHOU Z H, ZHU G L, et al. Design method of big supercooling water droplet icing detector and detector: CN104354867A[P]. 2015-02-18 (in Chinese).
85 徐弘炜, 杜富强, 彭汉元, 等. 一种可探测过冷大水滴的结冰探测系统: CN111114793A[P]. 2020-05-08.
  XU H W, DU F Q, PENG H Y, et al. Icing detection system capable of detecting supercooled large water drops: CN111114793A[P]. 2020-05-08 (in Chinese).
86 肖春华, 乔宝英. 一种过冷水滴结冰探测装置: CN206876374U[P]. 2018-01-12.
  XIAO C H, QIAO B Y. Supercooled water droplet detecting device that freezes: CN206876374U[P]. 2018-01-12 (in Chinese).
87 赵铁英. 严酷结冰气象条件下临界冰形的确定方法[J]. 航空科学技术, 2018, 29(8): 48-52.
  ZHAO T Y. Determination of critical ice shape under inclement ice weather conditions[J]. Aeronautical Science & Technology, 2018, 29(8): 48-52 (in Chinese).
88 拉米什·阿加瓦尔, 费耶特·科利尔, 安德烈亚斯·费舍尔, 等. 绿色航空[M]. 刘莉, 朱春玲, 季路成, 等, 译. 北京: 北京理工大学出版社, 2016: 252-258.
  AGARWAL R, COLLIER F, SCH?FER A, et al. Green aviation [M]. LIU L, ZHU C L, JI L C, et al, translated. Beijing: Beijing Institute of Technology Press, 2016: 252-258 (in Chinese).
89 SAITO H, TAKAI K, YAMAUCHI G. Water- and ice-repellent coatings[J]. Surface Coatings International, 1997, 80(4): 168-171.
90 BIRD J C, DHIMAN R, KWON H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503(7476): 385-388.
91 GRAEBER G, DOLDER V, SCHUTZIUS T M, et al. Cascade freezing of supercooled water droplet collectives[J]. ACS Nano, 2018, 12(11): 11274-11281.
92 KONG W L, WANG L P, BIAN P X, et al. Effect of surface wettability on impact-freezing of supercooled large water droplet[J]. Experimental Thermal and Fluid Science, 2022, 130: 110508.
93 KREDER M J, ALVARENGA J, KIM P, et al. Design of anti-icing surfaces: Smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003.
94 BOINOVICH L B, EMELYANENKO A M, EMELYANENKO K A, et al. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings[J]. ACS Nano, 2019, 13(4): 4335-4346.
95 LI J, ZHOU Y J, WANG W B, et al. Superhydrophobic copper surface textured by laser for delayed icing phenomenon[J]. Langmuir, 2020, 36(5): 1075-1082.
96 ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1-2): 58-67.
97 HUANG X, TEPYLO N, POMMIER-BUDINGER V, et al. A survey of icephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications[J]. Progress in Aerospace Sciences, 2019, 105: 74-97.
98 ZHAO Z H, CHEN H W, LIU X L, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology, 2018, 349: 340-346.
99 STROBL T, ADAM R, ENTZ R, et al. A hybrid system for ice protection and detection[C]∥ International Conference on More Electric Aircraft (MEA2015). Toulouse: Airbus Group Innovations, 2015: 296704415.
100 田晓东. 如何提高航班运行的正常性[J]. 中国民用航空, 2004(8): 23-25.
  TIAN X D. How to improve the normality of flight operation[J]. Civil Aviation Economics & Technology, 2004(8): 23-25 (in Chinese).
101 HARRIS F. An economic model of US airline operating expenses: NASA/CR 2005-213476[R]. Washington, D.C.: NASA, 2013.
102 林文进, 任和, 彭奇云. 国产支线飞机航线运营经济性分析框架[J]. 民用飞机设计与研究, 2019(4): 21-30.
  LIN W J, REN H, PENG Q Y. A general analysis model of economical efficiency for regional aircraft operation[J]. Civil Aircraft Design & Research, 2019(4): 21-30 (in Chinese).
103 莫庆华. 民用飞机使用经济性分析方法及软件系统[D]. 上海: 上海交通大学, 2011.
  MO Q H. Civil airplane operating economical anaylsis methods and software system[D]. Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese).
104 侯昊. 航班延误经济损失测算及延误损失控制策略研究[D]. 天津: 中国民航大学, 2014.
  HOU H. Research on the estimation of flight delay economic losses and the strategy for control losses[D]. Tianjin: Civil Aviation University of China, 2014 (in Chinese).
105 赵文智, 王化佳. 一个航班备降延误的成本分析[J]. 中国民航大学学报, 2009, 27(6): 45-47.
  ZHAO W Z, WANG H J. Cost study for flight delay due to weather[J]. Journal of Civil Aviation University of China, 2009, 27(6): 45-47 (in Chinese).
Outlines

/