Articles

Orbit determination analysis using Crab observation data of GECAM mission

  • Dawei HAN ,
  • Shijie ZHENG ,
  • Youli TUO ,
  • Mingyu GE ,
  • Liming SONG ,
  • Xinqiao LI ,
  • Xiangyang WEN ,
  • Shaolin XIONG
Expand
  • Key Laboratory of Particle Astrophysics,The Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China
E-mail: dwhan@ihep.ac.cn

Received date: 2021-11-09

  Revised date: 2021-12-04

  Accepted date: 2022-04-08

  Online published: 2022-04-24

Supported by

Strategic Priority Program on Space Science, the Chinese Academy of Sciences(XDA15360300);National Natural Science Foundation of China(U1838101)

Abstract

Huairou-I, the Gravitational Wave High-Energy Electromagnetic Counterpart All-Sky Monitor (GECAM) satellite, is used to monitor various types of Gravitational Wave Bursts (GWBs), Fast Radio Bursts (FRBs), and Gamma-Ray Bursts (GRBs). Thanks to the novel design using silicon photoelectric multipliers instead of traditional devices in the GRD detector and electronics, GECAM features a high time resolution (0.1 μs), time accuracy (~ 3 μs), and wide field of view, and reduces the weight greatly. In this work, we report our results of testing pulsar navigation with GECAM observations. The Significance Enhancement of Pulse-profile with Orbit-dynamics (SEPO) algorithm combines orbit dynamics and pulsar profile analysis for the first time in China, which has been used in the POLAR and Insight-HXMT Satellite. With 40 days observations of the Crab pulsar, the GECAM-B orbit is determined successfully. The parameter values of the orbital elements are solved and the errors are estimated by the bootstrap method. The errors with 99.7% confidence are semi-major axis error of 5.85 m, eccentricity error of 0.000 121, inclination error of 0.013 1°, RAAN error of 0.165°, error for argument of perigee of 0.216°, and mean anomaly error of 0.217°. The experiment proves that the small satellites used for gamma-ray burst monitoring can be also used to determine the orbit by the pulsar, which provides a new idea for pulsar orbit determination and navigation in the future.

Cite this article

Dawei HAN , Shijie ZHENG , Youli TUO , Mingyu GE , Liming SONG , Xinqiao LI , Xiangyang WEN , Shaolin XIONG . Orbit determination analysis using Crab observation data of GECAM mission[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(3) : 526641 -526641 . DOI: 10.7527/S1000-6893.2021.26641

References

1 TAYLOR J H. Millisecond pulsars: Nature’s most stable clocks[J]. Proceedings of the IEEE199179(7): 1054-1062.
2 HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature1968217(5130): 709-713.
3 DOWNS G. Interplanetary navigation using pulsating radio sources: N74-3415032-1594[R]. Washington, D.C.: NASA, 1974.
4 CHESTER T J, BUTMAN S A. Navigation using X-ray pulsars[J]. Telecommunications and Data Acquisition Progress Report198163: 22-25.
5 WOOD K S. Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite[C]∥ Proceedings of SPIE 1940, Small Satellite Technology and Applications III, Optical Engineering and Photonics in Aerospace Sensing. Orlando: Society of Photo Optical, 1993: 105-116.
6 SHEIKH S. The use of variable celestial X-ray sources for spacecraft navigation[D]. City of College Park: University of Maryland, 2005.
7 BECKER W, BERNHARDT M G, JESSNER A. Autonomous spacecraft navigation with pulsars[J]. Acta Futura20137: 11-28.
8 Mitchell J W. Sextant X-ray pulsar navigation demonstration: Initial on-orbit results[C]∥ Annual American Astronautical Society (AAS) Guidance and Control Conference 2018. San Diego: AAS, 2018: GSFCE-DAA-TN 51842.
9 周庆勇, 刘思伟, 郝晓龙, 等. 空间X射线观测确定脉冲星星历表参数精度分析[J]. 物理学报201665(7): 368-377.
  ZHOU Q Y, LIU S W, HAO X L, et al. Analysis of measurement accuracy of ephemeris parameters for pulsar navigation based on the X-ray space observation[J]. Acta Physica Sinica201665(7): 368-377 (in Chinese).
10 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 8-9.
  ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015: 8-9 (in Chinese).
11 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学201747(9): 120-128.
  ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201747(9): 120-128 (in Chinese).
12 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报202069(3): 030702.
  ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica202069(3): 030702 (in Chinese).
13 李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报201854(11): 49-60.
  LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering201854(11): 49-60 (in Chinese).
14 HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems20195: 018003.
15 ZHENG S J, ZHANG S N. LU F J.et al. In-orbit demonstration of X-ray pulsar navigation with the insight-HXMT satellite[J]. The Astrophysical Journal Supplement Series2019244: 1.
16 熊少林, 张科科, 李超, 等. “引力波暴高能电磁对应体全天监测器”卫星任务概况[J]. 国际太空2019(12): 22-25.
  XIONG S L, ZHANG K K, LI C, et al. Gravitational wave high-energy electromagnetic counterpart all-sky monitor satellite mission overview[J]. Space International2019(12): 22-25 (in Chinese).
17 李新乔, 文向阳, 安正华, 等. GECAM卫星有效载荷介绍[J]. 中国科学: 物理学 力学 天文学202050(12): 84-100.
  LI X Q, WEN X Y, AN Z H, et al. The GECAM and its payload[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 202050(12): 84-100 (in Chinese).
18 郭东亚, 彭文溪, 朱玥, 等. GECAM能量响应及在轨本底模拟[J]. 中国科学: 物理学 力学 天文学202050(12): 101-109.
  GUO D Y, PENG W X, ZHU Y, et al. Energy response and in-flight background simulation for GECAM[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 202050(12): 101-109 (in Chinese).
19 XIAO S, XIONG S L, CAI C, et al. Energetic transients joint analysis system for multi-INstrument (ETJASMIN) for GECAM—I. Positional, temporal, and spectral analyses[J]. MNRAS2022514: 2397-2406.
20 熊凯, 魏春岭, 刘良栋. 基于脉冲星的空间飞行器自主导航技术研究[J]. 航天控制200725(4): 36-40, 45.
  XIONG K, WEI C L, LIU L D. Research on the spacecraft autonomous navigation using pulsars[J]. Aerospace Control200725(4): 36-40, 45 (in Chinese).
21 王奕迪, 郑伟, 安雪滢, 等. 基于改进动静态滤波的脉冲星/CNS深空探测组合导航方法[J]. 中国空间科学技术201333(5): 22-28.
  WANG Y D, ZHENG W, AN X Y, et al. Pulsar/CNS integrated navigation method based on improved kinematic and static filter for deep space explorer[J]. Chinese Space Science and Technology201333(5): 22-28 (in Chinese).
22 Sheikh S I, Golshan A R, Pines D J. Absolute and relative position determination using variable celestial X-ray sources[C]∥ Proceedings of 30th Annual AAS Rocky Mountain Guidance and Control Conference. San Diego: AAS, 2007: 855.
Outlines

/