Fluid Mechanics and Flight Mechanics

Wingtip vortex and its interaction with oblique shock wave in wide-speed range

  • Yinkai MA ,
  • Zhufei LI ,
  • Qi HUANG ,
  • Jiming YANG
Expand
  • Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

Received date: 2022-01-24

  Revised date: 2022-02-10

  Accepted date: 2022-03-04

  Online published: 2022-03-11

Supported by

National Natural Science Foundation of China(12172354)

Abstract

Wingtip vortex generated by a wide-speed range flight vehicle and its interaction with oblique shock wave are numerically investigated in a freestream Mach number range of 0.2-6.0. The evolution characteristics of the wingtip vortex are examined and the mechanism of its breakdown induced by the oblique shock wave are revealed. The results show that the tangential velocity and circulation distribution of the wingtip vortex in the wide-speed range still conform to the self-similarity relation in the low-speed flow. In supersonic and hypersonic flow regimes, the intensity of the wingtip vortex decreases more obviously along the flow direction. When the wingtip vortex with a lower pressure at the vortex core interacts with the oblique shock wave, the vortex is easier to break down. However, the existing theories are difficult to accurately predict the vortex breakdown in the wide-speed range. When the classic theory is modified by considering the pressure deficit at the vortex core, the ability to predict the vortex breakdown induced by the oblique shock wave is greatly improved.

Cite this article

Yinkai MA , Zhufei LI , Qi HUANG , Jiming YANG . Wingtip vortex and its interaction with oblique shock wave in wide-speed range[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(7) : 38 -50 . DOI: 10.7527/S1000-6893.2022.26990

References

1 MOSES P L. X-43C plans and status: AIAA-2003-7084 [R]. Reston: AIAA, 2003.
2 LONGSTAFF R, BOND A. The SKYLON project: AIAA-2011-2244[R]. Reston: AIAA, 2011.
3 MEHTA U, AFTOSMIS M, BOWLES J, et al. Skylon aerospace plane and its aerodynamics and plumes[J]. Journal of Spacecraft and Rockets201653(2): 340-353.
4 SKUJINS T, CESNIK C E S, OPPENHEIMER M W, et al. Canard-elevon interactions on a hypersonic vehicle[J]. Journal of Spacecraft and Rockets201047(1): 90-100.
5 HALLOCK J N, HOLZ?PFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences201898: 27-36.
6 CHENG Z P, QIU S Y, XIANG Y, et al. Instability characteristics of a co-rotating wingtip vortex pair based on bi-global linear stability analysis[J]. Chinese Journal of Aeronautics202134(5): 1-16.
7 程泽鹏, 邱思逸, 向阳, 等. 基于全局线性稳定性分析的翼尖双涡不稳定特征演化机理[J]. 航空学报202041(9): 123751.
  CHENG Z P, QIU S Y, XIANG Y, et al. Evolution mechanism of instability features of wingtip vortex pairs based on bi-global linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica202041(9): 123751 (in Chinese).
8 邱思逸, 程泽鹏, 向阳, 等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报201940(8): 122712.
  QIU S Y, CHENG Z P, XIANG Y, et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica201940(8): 122712 (in Chinese).
9 KALKHORAN I M, SMART M K. Aspects of shock wave-induced vortex breakdown[J]. Progress in Aerospace Sciences200036(1): 63-95.
10 GERZ T, HOLZ?PFEL F, DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences200238(3): 181-208.
11 NEDUNGADI A, LEWIS M J. Computational study of the flowfields associated with oblique shock/vortex interactions[J]. AIAA Journal199634(12): 2545-2553.
12 BATCHELOR G K. Axial flow in trailing line vortices[J]. Journal of Fluid Mechanics196420(4): 645-658.
13 BIRCH D, LEE T, MOKHTARIAN F, et al. Structure and induced drag of a tip vortex[J]. Journal of Aircraft200441(5): 1138-1145.
14 BENINATI M L, MARSHALL J S. An experimental study of the effect of free-stream turbulence on a trailing vortex[J]. Experiments in Fluids200538(2): 244-257.
15 RAMAPRIAN B R, ZHENG Y X. Near field of the tip vortex behind an oscillating rectangular wing[J]. AIAA Journal199836(7): 1263-1269.
16 GROW T L. Effect of a wing on its tip vortex[J]. Journal of Aircraft19696(1): 37-41.
17 MCALISTER K W, TAKAHASHI R K. NACA 0015 wing pressure and trailing vortex measurements[R]. Washington D.C.: NASA, 1991.
18 RAMAPRIAN B R, ZHENG Y X. Measurements in rollup region of the tip vortex from a rectangular wing[J]. AIAA Journal199735(12): 1837-1843.
19 SKINNER S N, GREEN R B, ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids202032(9): 095102.
20 SMART M K, KALKHORAN I M, BENTSON J. Measurements of supersonic wing tip vortices[J]. AIAA Journal199533(10): 1761-1768.
21 SHEVCHENKO A, KHARITONOV A, SHMAKOV A. Hypersonic vortex wake behind the wing and its interaction with shock waves[C]∥5 th European Conference for Aerospace Sciences, 2013.
22 KALKHORAN I M, SMART M K, BETTI A. Interaction of supersonic wing-tip vortices with a normal shock[J]. AIAA Journal199634(9): 1855-1861.
23 SMART M K, KALKHORAN I M. Effect of shock strength on oblique shock-wave/vortex interaction[J]. AIAA Journal199533(11): 2137-2143.
24 MAGRI V, KALKHORAN I M. Numerical investigation of oblique shock wave/vortex interaction[J]. Computers & Fluids201386: 343-356.
25 CATTAFESTA L N, SETTLES G S. Experiments on shock/vortex interactions: AIAA-1992-0315[R]. Reston: AIAA, 1992.
26 HIEJIMA T. Criterion for vortex breakdown on shock wave and streamwise vortex interactions[J]. Physical Review E201489(5): 053017.
27 SMART M K, KALKHORAN I M. Flow model for predicting normal shock wave induced vortex breakdown[J]. AIAA Journal199735(10): 1589-1596.
28 MAHESH K. A model for the onset of breakdown in an axisymmetric compressible vortex[J]. Physics of Fluids19968(12): 3338-3345.
29 ERLEBACHER G, HUSSAINI M Y, SHU C W. Interaction of a shock with a longitudinal vortex[J]. Journal of Fluid Mechanics1997337: 129-153.
30 DELERY J, HOROWITZ E, LEUCHTER O, et al. Fundamental studies on vortex flows[J]. Recherche Aerospatiale (English Edition)1984(2): 1-24.
31 GRUHN P, GüLHAN A. Aerodynamic measurements of an air-breathing hypersonic vehicle at Mach 3.5 to 8[J]. AIAA Journal201856(11): 4282-4296.
32 童秉纲, 孔祥言, 邓国华. 气体动力学[M].第 2版. 北京: 高等教育出版社, 2012: 137-143.
  TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012: 137-143 (in Chinese).
33 李祝飞, 高文智, 杨基明. 一种二元进气道起动特性的数值与实验考察[J]. 推进技术201637(7): 1224-1232.
  LI Z F, GAO W Z, YANG J M. Numerical and experimental investigation for starting characteristics of a two-dimensional inlet[J]. Journal of Propulsion Technology201637(7): 1224-1232 (in Chinese).
34 LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics202134(1): 44-49.
35 BERESH S J, HENFLING J F, SPILLERS R W. Planar velocimetry of a fin trailing vortex in subsonic compressible flow[J]. AIAA Journal200947(7): 1730-1740.
36 马印锴, 李祝飞, 杨基明. 高马赫数来流条件下斜激波与流向涡对相互作用[J]. 推进技术202243(1): 88-99.
  MA Y K, LI Z F, YANG J M. Oblique shock wave/streamwise-vortex-pair interaction at a high Mach number[J]. Journal of Propulsion Technology202243(1): 88-99 (in Chinese).
37 MA Y K, LI Z F, YANG J M. Planar laser scattering visualization of streamwise vortex pairs in a Mach 6 flow[J]. Chinese Journal of Aeronautics202336(1): 166-177.
38 BIRCH D M. Self-similarity of trailing vortices[J]. Physics of Fluids201224(2): 025105.
39 WU Z N, XU Y Z, WANG W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics201326(3): 501-513.
Outlines

/