ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A dissipation control method based on amplitude and wavenumber
Received date: 2021-10-29
Revised date: 2021-11-15
Accepted date: 2022-01-05
Online published: 2022-01-11
Supported by
National Natural Science Foundation of China(51790512)
The shock capture scheme can adaptively control the dissipation according to the smoothness of the local flow field to suppress the small-scale non-physical fluctuations and resolve large-scale flow structures. In order to better identify the small-scale non-physical fluctuations produced in the shock capture process, and then more accurately control dissipation, this paper proposes a dissipation control method based on amplitude and wavenumber of the local flow field. For problems with strong unsteadiness, such as shock-dominated or isotropic turbulence problems, according to the one-dimensional unsteady Euler equation, the relationship between different physical quantities at small scales is derived, and the threshold of the small-scale fluctuation amplitude are determined by numerical experiments or Kolmogorov scale theory. Finally, based on Fourier analysis and the threshold of the small-scale fluctuation amplitude, the relationship between the magnitude of the dissipation, and the amplitude and wavenumber of the local flow field is established. In order to obtain the shock-capturing capability, the scheme is hybridized with the TENO(Targeted Essentially Non-Oscillatory) scheme to form a hybrid scheme. A series of benchmark examples involving shocks or turbulence show that this scheme produces small-scale nonphysical fluctuations with lower wavenumbers, smaller amplitudes, and better resolution of large-scale flow structures during computations.
Huangsheng WEI , Zhu HUANG , Guang XI . A dissipation control method based on amplitude and wavenumber[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 126589 -126589 . DOI: 10.7527/S1000-6893.2022.26589
1 | GOURDAIN N, SICOT F, DUCHAINE F, et al. Large eddy simulation of flows in industrial compressors: A path from 2015 to 2035[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2022): 20130323. |
2 | 王志坚. 基于高阶方法的工业大涡模拟进展[J]. 空气动力学学报, 2021, 39(1): 111-124. |
WANG Z J. Progress in high-order methods for industrial large eddy simulation[J]. Acta Aerodynamica Sinica, 2021, 39(1): 111-124 (in Chinese). | |
3 | LADEINDE F, CAI X D, VISBAL M R, et al. Turbulence spectra characteristics of high order schemes for direct and large eddy simulation[J]. Applied Numerical Mathematics, 2001, 36(4): 447-474. |
4 | LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. |
5 | JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. |
6 | 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158. |
LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147-158 (in Chinese). | |
7 | BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452. |
8 | HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567. |
9 | BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. |
10 | MARTíN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289. |
11 | HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965. |
12 | FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics, 2016, 305: 333-359. |
13 | FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751. |
14 | HILL D J, PULLIN D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics, 2004, 194(2): 435-450. |
15 | PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics, 2002, 178(1): 81-117. |
16 | PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics, 2006, 219(2): 489-497. |
17 | HU X Y, TRITSCHLER V K, PIROZZOLI S, et al. Dispersion-dissipation condition for finite difference schemes[DB/OL]. arXiv preprint: 1204.5088, 2012. |
18 | SUN Z S, LUO L, REN Y X, et al. A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique[J]. Journal of Computational Physics, 2014, 270: 238-254. |
19 | 李妍慧, 陈琮巍, 任玉新, 等. 高精度有限差分格式的色散优化及耗散控制[J]. 空气动力学学报, 2021, 39(1): 138-156, 91. |
LI Y H, CHEN C W, REN Y X, et al. The dispersion optimization and dissipation adjustment for high-order finite difference schemes[J]. Acta Aerodynamica Sinica, 2021, 39(1): 138-156, 91 (in Chinese). | |
20 | 刘君, 韩芳, 魏雁昕. 特定条件下高阶WENO格式计算结果误差[J]. 航空学报, 2022, 43(2): 124940. |
LIU J, HAN F, WEI Y X. Numerical errors of high-order WENO schemes under specific conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124940 (in Chinese). | |
21 | 范月华, 段毅, 周乃桢, 等. 高马赫数层流摩阻数值计算精度[J]. 航空学报, 2021, 42(9): 625737. |
FAN Y H, DUAN Y, ZHOU N Z, et al. Friction numerical calculation precision in high Mach number laminar flow[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625737 (in Chinese). | |
22 | TIKHOMIROV V M. On the degeneration of isotropic turbulence in an incompressible viscous fluid[M]∥Selected works of A. N. Kolmogorov. Dordrecht: Springer Netherlands, 1991: 319-323. |
23 | KIM D, KWON J H. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis[J]. Journal of Computational Physics, 2005, 210(2): 554-583. |
24 | FU L, HU X Y, ADAMS N A. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws[J]. Journal of Computational Physics, 2017, 349: 97-121. |
25 | CARPENTER M H, CASPER J H. Accuracy of shock capturing in two spatial dimensions[J]. AIAA Journal, 1999, 37(9): 1072-1079. |
26 | CASPER J, CARPENTER M H. Computational considerations for the simulation of shock-induced sound[J]. SIAM Journal on Scientific Computing, 1998, 19(3): 813-828. |
27 | TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Cambridge: MIT Press, 1972: 1-30. |
28 | 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安: 西安交通大学出版社, 2006: 304-207. |
ZHANG M Y, JING S R, LI G J. Advanced engineering fluid mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 2006: 304-207 (in Chinese). | |
29 | 刘君, 魏雁昕, 韩芳. 有限差分法的坐标变换诱导误差[J]. 航空学报, 2021, 42(6): 124397. |
LIU J, WEI Y X, HAN F. Coordinate transformation induced errors of finite difference method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124397 (in Chinese). | |
30 | JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981. |
31 | REN Y X, LIU M E, ZHANG H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2): 365-386. |
32 | CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. |
33 | ZHAO G Y, SUN M B, PIROZZOLI S. On shock sensors for hybrid compact/WENO schemes[J]. Computers & Fluids, 2020, 199: 104439. |
34 | SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II[J]. Journal of Computational Physics, 1989, 83(1): 32-78. |
35 | LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM Journal on Scientific Computing, 1998, 19(2): 319-340. |
36 | WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. |
37 | JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics, 2010, 229(4): 1213-1237. |
/
〈 |
|
〉 |