Fluid Mechanics and Flight Mechanics

A dissipation control method based on amplitude and wavenumber

  • Huangsheng WEI ,
  • Zhu HUANG ,
  • Guang XI
Expand
  • School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China

Received date: 2021-10-29

  Revised date: 2021-11-15

  Accepted date: 2022-01-05

  Online published: 2022-01-11

Supported by

National Natural Science Foundation of China(51790512)

Abstract

The shock capture scheme can adaptively control the dissipation according to the smoothness of the local flow field to suppress the small-scale non-physical fluctuations and resolve large-scale flow structures. In order to better identify the small-scale non-physical fluctuations produced in the shock capture process, and then more accurately control dissipation, this paper proposes a dissipation control method based on amplitude and wavenumber of the local flow field. For problems with strong unsteadiness, such as shock-dominated or isotropic turbulence problems, according to the one-dimensional unsteady Euler equation, the relationship between different physical quantities at small scales is derived, and the threshold of the small-scale fluctuation amplitude are determined by numerical experiments or Kolmogorov scale theory. Finally, based on Fourier analysis and the threshold of the small-scale fluctuation amplitude, the relationship between the magnitude of the dissipation, and the amplitude and wavenumber of the local flow field is established. In order to obtain the shock-capturing capability, the scheme is hybridized with the TENO(Targeted Essentially Non-Oscillatory) scheme to form a hybrid scheme. A series of benchmark examples involving shocks or turbulence show that this scheme produces small-scale nonphysical fluctuations with lower wavenumbers, smaller amplitudes, and better resolution of large-scale flow structures during computations.

Cite this article

Huangsheng WEI , Zhu HUANG , Guang XI . A dissipation control method based on amplitude and wavenumber[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 126589 -126589 . DOI: 10.7527/S1000-6893.2022.26589

References

1 GOURDAIN N, SICOT F, DUCHAINE F, et al. Large eddy simulation of flows in industrial compressors: A path from 2015 to 2035[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences2014372(2022): 20130323.
2 王志坚. 基于高阶方法的工业大涡模拟进展[J]. 空气动力学学报202139(1): 111-124.
  WANG Z J. Progress in high-order methods for industrial large eddy simulation[J]. Acta Aerodynamica Sinica202139(1): 111-124 (in Chinese).
3 LADEINDE F, CAI X D, VISBAL M R, et al. Turbulence spectra characteristics of high order schemes for direct and large eddy simulation[J]. Applied Numerical Mathematics200136(4): 447-474.
4 LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics1994115(1): 200-212.
5 JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics1996126(1): 202-228.
6 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报201536(1): 147-158.
  LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica201536(1): 147-158 (in Chinese).
7 BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics2000160(2): 405-452.
8 HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points[J]. Journal of Computational Physics2005207(2): 542-567.
9 BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics2008227(6): 3191-3211.
10 MARTíN M P, TAYLOR E M, WU M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics2006220(1): 270-289.
11 HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics2010229(23): 8952-8965.
12 FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simulations[J]. Journal of Computational Physics2016305: 333-359.
13 FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics2018374: 724-751.
14 HILL D J, PULLIN D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics2004194(2): 435-450.
15 PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics2002178(1): 81-117.
16 PIROZZOLI S. On the spectral properties of shock-capturing schemes[J]. Journal of Computational Physics2006219(2): 489-497.
17 HU X Y, TRITSCHLER V K, PIROZZOLI S, et al. Dispersion-dissipation condition for finite difference schemes[DB/OL]. arXiv preprint: 1204.5088, 2012.
18 SUN Z S, LUO L, REN Y X, et al. A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique[J]. Journal of Computational Physics2014270: 238-254.
19 李妍慧, 陈琮巍, 任玉新, 等. 高精度有限差分格式的色散优化及耗散控制[J]. 空气动力学学报202139(1): 138-156, 91.
  LI Y H, CHEN C W, REN Y X, et al. The dispersion optimization and dissipation adjustment for high-order finite difference schemes[J]. Acta Aerodynamica Sinica202139(1): 138-156, 91 (in Chinese).
20 刘君, 韩芳, 魏雁昕. 特定条件下高阶WENO格式计算结果误差[J]. 航空学报202243(2): 124940.
  LIU J, HAN F, WEI Y X. Numerical errors of high-order WENO schemes under specific conditions[J]. Acta Aeronautica et Astronautica Sinica202243(2): 124940 (in Chinese).
21 范月华, 段毅, 周乃桢, 等. 高马赫数层流摩阻数值计算精度[J]. 航空学报202142(9): 625737.
  FAN Y H, DUAN Y, ZHOU N Z, et al. Friction numerical calculation precision in high Mach number laminar flow[J]. Acta Aeronautica et Astronautica Sinica202142(9): 625737 (in Chinese).
22 TIKHOMIROV V M. On the degeneration of isotropic turbulence in an incompressible viscous fluid[M]∥Selected works of A. N. Kolmogorov. Dordrecht: Springer Netherlands, 1991: 319-323.
23 KIM D, KWON J H. A high-order accurate hybrid scheme using a central flux scheme and a WENO scheme for compressible flowfield analysis[J]. Journal of Computational Physics2005210(2): 554-583.
24 FU L, HU X Y, ADAMS N A. Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws[J]. Journal of Computational Physics2017349: 97-121.
25 CARPENTER M H, CASPER J H. Accuracy of shock capturing in two spatial dimensions[J]. AIAA Journal199937(9): 1072-1079.
26 CASPER J, CARPENTER M H. Computational considerations for the simulation of shock-induced sound[J]. SIAM Journal on Scientific Computing199819(3): 813-828.
27 TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Cambridge: MIT Press, 1972: 1-30.
28 张鸣远, 景思睿, 李国君. 高等工程流体力学[M]. 西安: 西安交通大学出版社, 2006: 304-207.
  ZHANG M Y, JING S R, LI G J. Advanced engineering fluid mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 2006: 304-207 (in Chinese).
29 刘君, 魏雁昕, 韩芳. 有限差分法的坐标变换诱导误差[J]. 航空学报202142(6): 124397.
  LIU J, WEI Y X, HAN F. Coordinate transformation induced errors of finite difference method[J]. Acta Aeronautica et Astronautica Sinica202142(6): 124397 (in Chinese).
30 JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981.
31 REN Y X, LIU M E, ZHANG H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics2003192(2): 365-386.
32 CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics2011230(5): 1766-1792.
33 ZHAO G Y, SUN M B, PIROZZOLI S. On shock sensors for hybrid compact/WENO schemes[J]. Computers & Fluids2020199: 104439.
34 SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II[J]. Journal of Computational Physics198983(1): 32-78.
35 LAX P D, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM Journal on Scientific Computing199819(2): 319-340.
36 WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics198454(1): 115-173.
37 JOHNSEN E, LARSSON J, BHAGATWALA A V, et al. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J]. Journal of Computational Physics2010229(4): 1213-1237.
Outlines

/