ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Reconstruction of three-dimensional refractive index field of premixed swirl combustion flame
Received date: 2021-10-08
Revised date: 2021-10-27
Accepted date: 2021-12-10
Online published: 2021-12-24
Supported by
National Natural Science Foundation of China(52176167);Natural Science Foundation of Jiangsu Province(BK20201279)
The structural parameters of the swirl combustors will affect the combustion process of the aeroengine combustion chamber. In order to obtain high-resolution three-dimensional flow field information, analyze the influence of the swirl combustors on the combustion performance of the combustion chamber and subsequently put forward optimization strategies, the Background Oriented Schlieren Tomography technique (BOST) can be used to reconstruct the instantaneous three-dimensional refractive index, density and temperature distribution of complex flows. First, the lens equivalent optical system and Runge-Kutta ray tracing method are used to simulate the distorted image caused by ray deflection. On this basis, the refractive index field of regular and complex objects is reconstructed using the optical flow equation reconstruction model. The influencing factors of image distortion are analyzed. The influence of measurement volume, focal length and other setting parameters on the reconstruction error is calculated. The optimized measurement setting method of background oriented schlieren is proposed. The simulation results show that the reconstructed refractive index field with optimized parameters show the complex flow field structures such as swirling jet, fold and vortex of turbulent swirling flame.
Zhihao LI , Biao ZHANG , Jian LI , Chuanlong XU , Zhaolong SONG . Reconstruction of three-dimensional refractive index field of premixed swirl combustion flame[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(4) : 126480 -126480 . DOI: 10.7527/S1000-6893.2021.26480
1 | 张磊, 于锦禄, 陈一, 等. 基于滑动弧的航空发动机燃烧室头部喷雾特性[J]. 航空学报, 2021, 42(3): 124308. |
ZHANG L, YU J L, CHEN Y, et al. Spray characteristics of gliding arc discharge combustion dome of areo-engine combustors[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124308 (in Chinese). | |
2 | 李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 024111. |
LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 024111 (in Chinese). | |
3 | DE A, ACHARYA S. Parametric study of upstream flame propagation in hydrogen-enriched premixed combustion: Effects of swirl, geometry and premixedness[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14649-14668. |
4 | LI T, PAREJA J, FUEST F, et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science and Technology, 2018, 29(1): 015206. |
5 | MA L, LEI Q C, IKEDA J, et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4575-4583. |
6 | LIU C, CAO Z, LIN Y Z, et al. Online cross-sectional monitoring of a swirling flame using TDLAS tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1338-1348. |
7 | DONG L, TITTEL F K, LI C G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24(6): A528-A535. |
8 | DALZIEL S B, HUGHES G O, SUTHERLAND B R. Whole-field density measurements by ‘synthetic schlieren’[J]. Experiments in Fluids, 2000, 28(4): 322-335. |
9 | VENKATAKRISHNAN L, SURIYANARAYANAN P. Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data[J]. Experiments in Fluids, 2009, 47(3): 463-473. |
10 | LEOPOLD F, OTA M, KLATT D, et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization, 2013, 1(2): 69-76. |
11 | NICOLAS F, DONJAT D, PLYER A, et al. Experimental study of a co-flowing jet in ONERA’s F2 research wind tunnel by 3D background oriented schlieren[J]. Measurement Science and Technology, 2017, 28(8): 085302. |
12 | IFFA E D, AZIZ A R A, MALIK A S. Concentration measurement of injected gaseous fuel using quantitative schlieren and optical tomography[J]. Journal of the European Optical Society Rapid Publications, 2010, 5: 10029. |
13 | ATKINSON G A, HANCOCK E R. Two-dimensional BRDF estimation from polarisation[J]. Computer Vision and Image Understanding, 2008, 111(2): 126-141. |
14 | NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements[J]. Experiments in Fluids, 2015, 57(1): 1-21. |
15 | GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame, 2018, 196: 284-299. |
16 | GRAUER S J, STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experiments in Fluids, 2020, 61(3): 80. |
17 | 赵凯华. 光学[M]. 北京:高等教育出版社,2004. |
ZHAO K H. Optics[M]. Beijing: Higher Education Press, 2004 (in Chinese). | |
18 | HUANG Y, SHI G D, ZHU K Y. Runge-Kutta ray tracing technique for solving radiative heat transfer in a two-dimensional graded-index medium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 176: 24-33. |
19 | 王帅. 基于龙格库塔法的非均匀介质辐射特性及耦合传热分析[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
WANG S. Radiation characteristics and coupled heat transfer analysis of inhomogeneous media based on the runge-kutta algorithm[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese). | |
20 | GOLDHAHN E, SEUME J. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids, 2007, 43(2/3): 241-249. |
21 | DAUN K J, GRAUER S J, HADWIN P J. Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2016, 172: 58-74. |
22 | 郑恩希. 几种不适定问题的正则化方法及其数值实现[D]. 长春: 吉林大学, 2009. |
ZHENG E X. Several regularization methods for ill-posed problems and their numerical realization[D]. Changchun: Jilin University, 2009 (in Chinese). | |
23 | ANDERSEN A H, KAK A C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm[J]. Ultrasonic Imaging, 1984, 6(1): 81-94. |
24 | 王志凯, 江立军, 陈盛, 等. 受限空间内三级旋流流场和燃烧性能研究[J]. 航空学报, 2021, 42(3): 124210. |
WANG Z K, JIANG L J, CHEN S, et al. Study on flow fields and combustion characteristics of triple swirler in confined zone[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124210 (in Chinese). |
/
〈 |
|
〉 |