Special Topic: Advanced Manufacturing and Assembly Technology Using Robotic

Mobile hybrid robot processing technology for large satellites

  • ZHANG Jiabo ,
  • LIU Haitao ,
  • YUE Yi ,
  • YANG Jizhi ,
  • YI Maobin ,
  • WANG Yunpeng ,
  • ROU Lei
Expand
  • 1. Beijing Spacecrafts, China Aerospace Technology, Beijing 100190, China;
    2. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China;
    3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

Received date: 2021-04-28

  Revised date: 2021-05-25

  Online published: 2021-12-01

Supported by

National Natural Science Foundation of China (52075533,62003346)

Abstract

Large-scale satellite structural parts are faced with multiple hoisting and transfer risks during the processing. Aiming at the problem of large positioning errors in the "satellite not moving, tool moving" manufacturing method, this paper proposes a new method for processing large-size structural parts with a mobile hybrid robot. Based on the coarse-fine positioning strategy that combines the omni-directional mobile platform with robot vision guidance, the "two-step positioning method" of preliminary positioning and precise positioning is adopted to improve the positioning accuracy of mobile hybrid robot processing. A mobile hybrid robot processing system was constructed, and milling verification experiments on large satellite structures were carried out. The experimental results show that the mobile hybrid robot improves the processing accuracy of the functional surface of the satellite cabin. The processing flatness of the four pressing points within the range of 1600 mm×800 mm reaches 0.08 mm, the coplanarity reaches 0.2 mm, and the distance tolerance is 0.6 mm. The high rigidity of the hybrid robot provides the feasibility for realizing high-precision and efficient in-situ machining of the satellite cabin.

Cite this article

ZHANG Jiabo , LIU Haitao , YUE Yi , YANG Jizhi , YI Maobin , WANG Yunpeng , ROU Lei . Mobile hybrid robot processing technology for large satellites[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022 , 43(5) : 625731 -625731 . DOI: 10.7527/S1000-6893.2021.25731

References

[1] 中国航空报. 2019年度国外国防制造技术动向[EB/OL]. (2020-01-12)[2021-11-13]. http://www.cannews.com.cn/2020/0112/207162.shtml.
[2] MOLLER C, SCHMIDT H C, KOCH P, et al. Machining of large scaled CFRP-Parts with mobile CNC-based robotic system in aerospace industry[J]. Procedia Manufacturing, 2017, 14:17-29.
[3] 陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J]. 中国科学:技术科学, 2018, 48(12):1302-1312. TAO B, ZHAO X W, DING H. Study on robotic mobile machining techniques for large complex components[J]. SCIENTIA SINICA Technologica, 2018, 48(12):1302-1312(in Chinese).
[4] 蒋君侠, 张启祥, 朱伟东. 飞机壁板自动钻铆机气动送钉技术[J]. 航空学报, 2018, 39(1):421380. JIANG J X, ZHANG Q X, ZHU W D. Pneumatic rivet feeding technology for automatic aircraft panel drilling and riveting machine[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1):421380(in Chinese).
[5] DONG C L, LIU H T, YUE W, et al. Stiffness modeling and analysis of a novel 5-DOF hybrid robot[J]. Mechanism and Machine Theory, 2018, 125:80-93.
[6] 黎广喜, 刘海涛, 徐青山. 铣削加工用混联机器人参数曲线插补方法[J]. 航空制造技术, 2018, 61(16):43-50. LI G X, LIU H T, XU Q S. Parameter Interpolation of Hybrid Robot for Milling Operation[J]. Aeronautical Manufacturing Technology, 2018, 61(16):43-50(in Chinese).
[7] 刘辛军, 谢福贵, 汪劲松. 当前中国机构学面临的机遇[J]. 机械工程学报, 2015, 51(13):2-12. LIU X J, XIE F G, WANG J S. Current Opportunities in the filed of mechanisms in China[J]. Journal of Mechanical Engineering, 2015, 51(13):2-12(in Chinese).
[8] VERL A, VALENTE A, MELKOTE S, et al. Robots in machining[J]. CIRP Annals-Manufacturing Technology, 2019, 68(2):799-822.
[9] TAO B, ZHAO X W, DING H. Mobile-robotic machining for large complex components:A review study[J]. Science China Technological Sciences, 2019,62(8):1388-1400.
[10] 周莹皓, 张加波, 乐毅.移动机器人技术在航天制造业中的应用[J]. 机械设计与制造工程, 2018, 47(2):87-91. ZHOU Y H, ZHANG J B, YUE Y. Application of mobile robot technology in the aerospace manufacturing industry[J]. Machine Design and Manufacturing Engineering, 2018, 47(2):87-91(in Chinese).
[11] KIM S H, NAM E, HA T I, et al. Robotic machining:A review of recent progress[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(9):1629-1642.
[12] YUE Y, ZHENG L Y, ZHANG. Z L et al. Research on numerical control of the mobile robotic machine tool[C]//The 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, 2019:76-80.
[13] ZHAO C X, WEN K, YUE Y, et al. Research on numerical control system of the mobile robotic equipment for unstructured machining[C]//WRC Symposium on Advanced Robotics and Automation, 2018:208-212.
[14] 石章虎, 何晓煦, 曾德标. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11):424105. SHI Z H, HE X X, ZENG D B. Error compensation method for mobile robot positioning based on error similarity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11):424105(in Chinese).
[15] SUSEMIHL H, MOELLER C, KOTHE S, et al. High accuracy mobile robotic system for machining of large aircraft components[J]. SAE International Journal Aerospace, 2016, 9(2):231-238.
[16] 李晨旭, 王西彬, 颜培. 机器人行星复合铣削技术验证实验[J]. 哈尔滨工业大学学报, 2021, 53(1):22-28. LI C X, WANG X B, YAN P. Verification experiment of robotic planetary compound milling technology[J]. Journal of Harbin Institute of Technology, 2021, 53(1):22-28(in Chinese).
[17] XIAO J L, ZHAO S L, GUO H et al. Research on the collaborative machining method for dual-robot mirror milling[J]. International Journal of Advanced Manufacturing Technology 2019, 105:4071-4084.
[18] BRILLINGER C, SUSEMIHL H, EHMKE F, et al. Mobile laser trackers for aircraft manufacturing:increasing accuracy and productivity of robotic applications for large parts[J]. SAE International Journal Aerospace, 2019, 1:1368.
[19] 刘海涛, 潘巧, 尹福文. TriMule混联机器人的精度综合[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(12):1245-1254. LIU H T, PAN Q, YIN F W. Accuracy synthesis of the TriMule hybrid robot[J]. Journal of Tianjin University (Science and Technology), 2019, 52(12):1245-1254(in Chinese).
[20] MA Y W, ZHANG J B, DONG C L. Kinetostatic modelling and gravity compensation of the TriMule robot[C]//IFToMM WC 2019:Advances in Mechanism and Machine, 2019:1731-1740
[21] FU J S, DING Y B, HUANG T, et al. Hand-eye calibration method with a three-dimensional-vision sensor considering the rotation parameters of the robot pose[J]. International Journal of Advanced Robotic Systems, 2020, 17(6):1-13.
Outlines

/